Suppr超能文献

新型机器学习算法在预测成人 III 类错颌畸形患者治疗决策中的应用。

Novel Machine Learning Algorithms for Prediction of Treatment Decisions in Adult Patients With Class III Malocclusion.

机构信息

Resident, Department of Orthodontics, College of Dentistry, University of Illinois Chicago.

Assistant Professor, Department of Electrical and Computer Engineering, College of Dentistry, University of Illinois Chicago.

出版信息

J Oral Maxillofac Surg. 2023 Nov;81(11):1391-1402. doi: 10.1016/j.joms.2023.07.137. Epub 2023 Jul 26.

Abstract

BACKGROUND

Management of Class III (Cl III) dentoskeletal phenotype is often expert-driven.

PURPOSE

The aim is to identify critical morphological features in postcircumpubertal Cl III treatment and appraise the predictive ability of innovative machine learning (ML) algorithms for adult Cl III malocclusion treatment planning.

STUDY DESIGN

The Orthodontics Department at the University of Illinois Chicago undertook a retrospective cross-sectional study analyzing Cl III malocclusion cases (2003-2020) through dental records and pretreatment lateral cephalograms.

PREDICTOR

Forty features were identified through a literature review and gathered from pretreatment records, serving as ML model inputs. Eight ML models were trained to predict the best treatment for adult Cl III malocclusion.

OUTCOME VARIABLE

Predictive accuracy, sensitivity, and specificity of the models, along with the highest-contributing features, were evaluated for performance assessment.

COVARIATES

Demographic covariates, including age, gender, race, and ethnicity, were assessed. Inclusion criteria targeted patients with cervical vertebral maturation stage 4 or above. Operative covariates such as tooth extraction and types of orthognathic surgical maneuvers were also analyzed.

ANALYSES

Demographic characteristics of the camouflage and surgical study groups were described statistically. Shapiro-Wilk Normality test was employed to check data distribution. Differences in means between groups were evaluated using parametric and nonparametric independent sample tests, with statistical significance set at <0.05.

RESULTS

The study involved 182 participants; 65 underwent camouflage mechanotherapy, and 117 received orthognathic surgery. No statistical differences were found in demographic characteristics between the two groups (P > .05). Extreme values of pretreatment parameters suggested a surgical approach. Artificial neural network algorithms predicted treatment approach with 91% accuracy, while the Extreme Gradient Boosting model achieved 93% accuracy after recursive feature elimination optimization. The Extreme Gradient Boosting model highlighted Wit's appraisal, anterior overjet, and Mx/Md ratio as key predictors.

CONCLUSIONS

The research identified significant cephalometric differences between Cl III adults requiring orthodontic camouflage or surgery. A 93% accurate artificial intelligence model was formulated based on these insights, highlighting the potential role of artificial intelligence and ML as adjunct tools in orthodontic diagnosis and treatment planning. This may assist in minimizing clinician subjectivity in borderline cases.

摘要

背景

III 类(Cl III)错牙合骨骼表型的管理通常由专家主导。

目的

目的是确定青春期后 Cl III 治疗中的关键形态特征,并评估创新机器学习(ML)算法对成人 Cl III 错牙合矫正治疗计划的预测能力。

研究设计

伊利诺伊大学芝加哥分校正畸科通过牙列记录和治疗前侧位头颅侧位片对 Cl III 错牙合病例(2003-2020 年)进行回顾性横断面研究。

预测因子

通过文献回顾确定了 40 个特征,并从治疗前记录中收集,作为 ML 模型输入。训练了 8 个 ML 模型来预测成人 Cl III 错牙合的最佳治疗方案。

结果变量

评估模型的预测准确性、敏感性和特异性,以及最高贡献特征,以进行性能评估。

协变量

评估了人口统计学协变量,包括年龄、性别、种族和民族。纳入标准针对颈椎成熟度 4 期及以上的患者。还分析了手术协变量,如拔牙和正颌手术的类型。

分析

描述了掩饰性和手术研究组的人口统计学特征的统计学数据。采用 Shapiro-Wilk 正态性检验检查数据分布。使用参数和非参数独立样本检验评估组间均值差异,以<0.05 为统计学显著性水平。

结果

该研究共纳入 182 名参与者;65 名接受了掩饰性机械治疗,117 名接受了正颌手术。两组的人口统计学特征无统计学差异(P>.05)。治疗前参数的极值提示采用手术方法。人工神经网络算法预测治疗方法的准确率为 91%,而极端梯度增强模型在递归特征消除优化后达到 93%的准确率。极端梯度增强模型突出了 Wit 的评估、前牙覆盖和 Mx/Md 比值作为关键预测因素。

结论

研究确定了需要正畸掩饰或手术的成人 Cl III 之间存在显著的头影测量差异。基于这些发现,构建了一个 93%准确的人工智能模型,突出了人工智能和 ML 在正畸诊断和治疗计划中的潜在辅助作用。这可能有助于减少在边界病例中临床医生的主观性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验