Suppr超能文献

人工智能作为正颌手术评估的预测工具。

Artificial intelligence as a prediction tool for orthognathic surgery assessment.

机构信息

Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Orthod Craniofac Res. 2024 Oct;27(5):785-794. doi: 10.1111/ocr.12805. Epub 2024 May 7.

Abstract

INTRODUCTION

An ideal orthodontic treatment involves qualitative and quantitative measurements of dental and skeletal components to evaluate patients' discrepancies, such as facial, occlusal, and functional characteristics. Deciding between orthodontics and orthognathic surgery remains challenging, especially in borderline patients. Advances in technology are aiding clinical decisions in orthodontics. The increasing availability of data and the era of big data enable the use of artificial intelligence to guide clinicians' diagnoses. This study aims to test the capacity of different machine learning (ML) models to predict whether orthognathic surgery or orthodontics treatment is required, using soft and hard tissue cephalometric values.

METHODS

A total of 920 lateral radiographs from patients previously treated with either conventional orthodontics or in combination with orthognathic surgery were used, comprising n = 558 Class II and n = 362 Class III patients, respectively. Thirty-two measures were obtained from each cephalogram at the initial appointment. The subjects were randomly divided into training (n = 552), validation (n = 183), and test (n = 185) datasets, both as an entire sample and divided into Class II and Class III sub-groups. The extracted data were evaluated using 10 machine learning models and by a four-expert panel consisting of orthodontists (n = 2) and surgeons (n = 2).

RESULTS

The combined prediction of 10 models showed top-ranked performance in the testing dataset for accuracy, F1-score, and AUC (entire sample: 0.707, 0.706, 0.791; Class II: 0.759, 0.758, 0.824; Class III: 0.822, 0.807, 0.89).

CONCLUSIONS

The proposed combined 10 ML approach model accurately predicted the need for orthognathic surgery, showing better performance in Class III patients.

摘要

简介

理想的正畸治疗涉及到牙齿和骨骼成分的定性和定量测量,以评估患者的差异,如面部、咬合和功能特征。正畸治疗和正颌手术之间的选择仍然具有挑战性,尤其是在边缘患者中。技术的进步正在辅助正畸治疗的临床决策。越来越多的数据可用性和大数据时代使人工智能的使用能够指导临床医生的诊断。本研究旨在测试不同机器学习(ML)模型的能力,以使用软组织和硬组织头颅侧位片预测是否需要正颌手术或正畸治疗。

方法

本研究共使用了 920 名接受过传统正畸治疗或与正颌手术联合治疗的患者的侧位头颅片,其中包括 n=558 名 Class II 患者和 n=362 名 Class III 患者。从每个头颅片的初始就诊时获得了 32 项测量值。受试者被随机分为训练(n=552)、验证(n=183)和测试(n=185)数据集,既作为一个整体样本,也分为 Class II 和 Class III 亚组。使用 10 种机器学习模型和由 2 名正畸医生和 2 名外科医生组成的 4 位专家小组对提取的数据进行评估。

结果

在测试数据集的准确性、F1 评分和 AUC 中,10 个模型的综合预测表现最佳(整体样本:0.707、0.706、0.791;Class II:0.759、0.758、0.824;Class III:0.822、0.807、0.89)。

结论

提出的联合 10 个 ML 方法模型准确地预测了正颌手术的需求,在 Class III 患者中表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/327f/11789623/f53517cb5568/nihms-2051400-f0001.jpg

相似文献

5
Prediction of surgery-first approach orthognathic surgery using deep learning models.使用深度学习模型预测手术先行正颌手术。
Int J Oral Maxillofac Surg. 2024 Nov;53(11):942-949. doi: 10.1016/j.ijom.2024.05.003. Epub 2024 May 31.

本文引用的文献

1
A novel machine learning model for class III surgery decision.一种用于 III 类手术决策的新型机器学习模型。
J Orofac Orthop. 2024 Jul;85(4):239-249. doi: 10.1007/s00056-022-00421-7. Epub 2022 Aug 26.
7
Applications of deep learning in dentistry.深度学习在牙科中的应用。
Oral Surg Oral Med Oral Pathol Oral Radiol. 2021 Aug;132(2):225-238. doi: 10.1016/j.oooo.2020.11.003. Epub 2020 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验