Suppr超能文献

使用机器学习预测先天性肾道畸形基因。

Predicting congenital renal tract malformation genes using machine learning.

机构信息

CentreDivision of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.

Manchester Centre for Genomic Medicine, St. Mary's Hospital, Health Innovation Manchester, Manchester University Foundation NHS Trust, Manchester, M13 9WL, UK.

出版信息

Sci Rep. 2023 Aug 14;13(1):13204. doi: 10.1038/s41598-023-38110-z.

Abstract

Congenital renal tract malformations (RTMs) are the major cause of severe kidney failure in children. Studies to date have identified defined genetic causes for only a minority of human RTMs. While some RTMs may be caused by poorly defined environmental perturbations affecting organogenesis, it is likely that numerous causative genetic variants have yet to be identified. Unfortunately, the speed of discovering further genetic causes for RTMs is limited by challenges in prioritising candidate genes harbouring sequence variants. Here, we exploited the computer-based artificial intelligence methodology of supervised machine learning to identify genes with a high probability of being involved in renal development. These genes, when mutated, are promising candidates for causing RTMs. With this methodology, the machine learning classifier determines which attributes are common to renal development genes and identifies genes possessing these attributes. Here we report the validation of an RTM gene classifier and provide predictions of the RTM association status for all protein-coding genes in the mouse genome. Overall, our predictions, whilst not definitive, can inform the prioritisation of genes when evaluating patient sequence data for genetic diagnosis. This knowledge of renal developmental genes will accelerate the processes of reaching a genetic diagnosis for patients born with RTMs.

摘要

先天性肾发育异常 (RTM) 是儿童严重肾衰竭的主要原因。迄今为止的研究仅确定了少数人类 RTM 的明确遗传原因。虽然一些 RTM 可能是由影响器官发生的定义不明确的环境干扰引起的,但很可能还有许多致病遗传变异尚未被发现。不幸的是,发现 RTM 进一步遗传原因的速度受到优先考虑携带序列变异的候选基因的挑战的限制。在这里,我们利用基于计算机的监督机器学习人工智能方法来识别极有可能参与肾脏发育的基因。这些基因发生突变时,是引起 RTM 的有希望的候选基因。通过这种方法,机器学习分类器确定哪些属性是肾脏发育基因所共有的,并识别具有这些属性的基因。在这里,我们报告了 RTM 基因分类器的验证,并对小鼠基因组中的所有蛋白质编码基因的 RTM 关联状态进行了预测。总的来说,我们的预测虽然不是定论,但在评估患者的遗传诊断序列数据时,可以为基因的优先级排序提供信息。对患有 RTM 的患者进行基因诊断时,这些对肾脏发育基因的了解将加速这一过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b8/10425350/cf625761f918/41598_2023_38110_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验