Suppr超能文献

受生物启发的预激活反射提高了在崎岖地形上行走的稳健性。

Bioinspired preactivation reflex increases robustness of walking on rough terrain.

机构信息

Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.

Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany.

出版信息

Sci Rep. 2023 Aug 14;13(1):13219. doi: 10.1038/s41598-023-39364-3.

Abstract

Walking on unknown and rough terrain is challenging for (bipedal) robots, while humans naturally cope with perturbations. Therefore, human strategies serve as an excellent inspiration to improve the robustness of robotic systems. Neuromusculoskeletal (NMS) models provide the necessary interface for the validation and transfer of human control strategies. Reflexes play a crucial part during normal locomotion and especially in the face of perturbations, and provide a simple, transferable, and bio-inspired control scheme. Current reflex-based NMS models are not robust to unexpected perturbations. Therefore, in this work, we propose a bio-inspired improvement of a widely used NMS walking model. In humans, different muscles show an increase in activation in anticipation of the landing at the end of the swing phase. This preactivation is not integrated in the used reflex-based walking model. We integrate this activation by adding an additional feedback loop and show that the landing is adapted and the robustness to unexpected step-down perturbations is markedly improved (from 3 to 10 cm). Scrutinizing the effect, we find that the stabilizing effect is caused by changed knee kinematics. Preactivation, therefore, acts as an accommodation strategy to cope with unexpected step-down perturbations, not requiring any detection of the perturbation. Our results indicate that such preactivation can potentially enable a bipedal system to react adequately to upcoming unexpected perturbations and is hence an effective adaptation of reflexes to cope with rough terrain. Preactivation can be ported to robots by leveraging the reflex-control scheme and improves the robustness to step-down perturbation without the need to detect the perturbation. Alternatively, the stabilizing mechanism can also be added in an anticipatory fashion by applying an additional knee torque to the contralateral knee.

摘要

在未知且崎岖的地形上行走对(双足)机器人来说具有挑战性,而人类则能自然应对各种扰动。因此,人类的策略为提高机器人系统的鲁棒性提供了极好的灵感。神经肌肉骨骼(NMS)模型为验证和转移人类控制策略提供了必要的接口。反射在正常运动中起着至关重要的作用,尤其是在面对扰动时,它们提供了一种简单、可转移且具有生物启发的控制方案。当前基于反射的 NMS 模型对意外扰动不够鲁棒。因此,在这项工作中,我们提出了对广泛使用的 NMS 步行模型的一种基于生物启发的改进。在人类中,不同的肌肉在摆动阶段结束时会提前增加激活,以预测着地。这种预先激活并未集成到所使用的基于反射的步行模型中。我们通过添加一个额外的反馈回路来集成这种激活,并表明着陆得到了适应,并且对意外的阶跃式下倾扰动的鲁棒性显著提高(从 3 厘米提高到 10 厘米)。仔细研究效果,我们发现稳定效果是由膝关节运动学的改变引起的。因此,预先激活是一种适应策略,用于应对意外的阶跃式下倾扰动,而无需检测扰动。我们的结果表明,这种预先激活可以使双足系统对即将到来的意外扰动做出适当反应,因此是对反射的有效适应,以应对崎岖地形。通过利用反射控制方案,预先激活可以使机器人具有更好的鲁棒性,从而提高对阶跃式下倾扰动的鲁棒性,而无需检测扰动。或者,也可以通过向对侧膝关节施加额外的膝关节转矩,以预期的方式添加稳定机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd3d/10425464/6baf73abe074/41598_2023_39364_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验