Suppr超能文献

使用仿生外骨骼控制器辅助行走平衡。

Assisting walking balance using a bio-inspired exoskeleton controller.

机构信息

Department of Mechanical Engineering, Robotics Core Lab of Flanders Make, KU Leuven, Leuven, Belgium.

Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

J Neuroeng Rehabil. 2023 Jun 27;20(1):82. doi: 10.1186/s12984-023-01205-9.

Abstract

BACKGROUND

Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity.

METHODS

Humans restore balance after a perturbation by adjusting activity of the muscles actuating the ankle in proportion to deviations from steady-state center of mass kinematics. We designed a controller that mimics the neural control of steady-state walking and the balance recovery responses to perturbations. This controller uses both feedback from ankle kinematics in accordance with an existing model and feedback from the center of mass velocity. Control parameters were estimated by fitting the experimental relation between kinematics and ankle moments observed in humans that were walking while being perturbed by push and pull perturbations. This identified model was implemented on a bilateral ankle exoskeleton.

RESULTS

Across twelve subjects, exoskeleton support reduced calf muscle activity in steady-state walking by 19% with respect to a minimal impedance controller (p < 0.001). Proportional feedback of the center of mass velocity improved balance support after perturbation. Muscle activity is reduced in response to push and pull perturbations by 10% (p = 0.006) and 16% (p < 0.001) and center of mass deviations by 9% (p = 0.026) and 18% (p = 0.002) with respect to the same controller without center of mass feedback.

CONCLUSION

Our control approach implemented on bilateral ankle exoskeletons can thus effectively support steady-state walking and balance control and therefore has the potential to improve mobility in balance-impaired individuals.

摘要

背景

平衡控制对于行动能力很重要,但外骨骼研究主要集中在提高代谢能量效率上。在这里,我们提出了一种仿生外骨骼控制器,它可以支持行走平衡并减少肌肉活动。

方法

人类通过调整脚踝肌肉的活动来恢复平衡,使其与质心运动学的稳态偏差成比例。我们设计了一种控制器,模仿稳态行走的神经控制和对扰动的平衡恢复反应。该控制器既使用了根据现有模型从脚踝运动学获得的反馈,也使用了质心速度的反馈。通过拟合观察到的人类在受到推和拉扰动时的运动学和脚踝力矩之间的实验关系来估计控制参数,这些人类在被扰动时正在行走。这个识别模型被应用于一个双边脚踝外骨骼。

结果

在 12 名受试者中,与最小阻抗控制器相比,外骨骼支撑在稳态行走时将小腿肌肉活动减少了 19%(p<0.001)。质心速度的比例反馈改善了扰动后的平衡支撑。肌肉活动在受到推和拉扰动时分别减少了 10%(p=0.006)和 16%(p<0.001),质心偏差分别减少了 9%(p=0.026)和 18%(p=0.002),与没有质心反馈的相同控制器相比。

结论

因此,我们在双边脚踝外骨骼上实现的控制方法可以有效地支持稳态行走和平衡控制,从而有可能改善平衡受损个体的行动能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25db/10303867/57717339298d/12984_2023_1205_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验