Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, 700126, Kolkata, West Bengal, India.
Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
J Mol Neurosci. 2023 Aug;73(7-8):664-677. doi: 10.1007/s12031-023-02146-7. Epub 2023 Aug 15.
The serotonin receptor subtype 5-HTR is widely distributed in the brain with an important role in various behavioral implications including neurological conditions and psychiatric disorders. The neuromodulatory action of 5-HTR largely depends upon its arrestin mediated signaling pathway. In this study, we tried to investigate the role of unusually long intracellular loop 3 (ICL3) region of the serotonin receptor 5-HTR in interaction with β-arrestin1 (Arr2) to compensate for the absence of the long cytoplasmic tail. Molecular modeling and docking tools were employed to obtain a suitable molecular conformation of the ICL3 region in complex with Arr2 which dictates the specific complex formation of 5-HTR with Arr2. This reveals the novel molecular mechanism of phosphorylated ICL3 mediated GPCR-arrestin interaction in the absence of the long cytoplasmic tail. The in-cell disulfide cross-linking experiments and molecular dynamics simulations of the complex further validate the model of 5-HTR-ICL3-Arr2 complex. Two serine residues (Ser281 and Ser295) within the 5-HTR-ICL3 region were found to be occupying the electropositive pocket of Arr2 in our model and might be crucial for phosphorylation and specific Arr2 binding. The alignment studies of these residues showed them to be conserved only across 5-HTR mammalian species. Thus, our studies were able to predict a molecular conformation of 5-HTR-Arr2 and identify the role of long ICL3 in the signaling process which might be crucial in designing targeted drugs (biased agonists) that promote GPCR-Arr2 signaling to deter the effects of stress and anxiety-like disorders.
5-羟色胺受体亚型 5-HTR 在大脑中广泛分布,在包括神经疾病和精神疾病在内的各种行为影响中具有重要作用。5-HTR 的神经调节作用在很大程度上取决于其衔接蛋白介导的信号通路。在这项研究中,我们试图研究 5-羟色胺受体 5-HTR 的异常长细胞内环 3(ICL3)区域与β-arrestin1(Arr2)相互作用的作用,以补偿长胞质尾的缺失。采用分子建模和对接工具获得 ICL3 区域与 Arr2 形成复合物的合适分子构象,该构象决定了 5-HTR 与 Arr2 的特定复合物形成。这揭示了长胞质尾缺失时磷酸化 ICL3 介导的 GPCR-衔接蛋白相互作用的新分子机制。复合物的细胞内二硫键交联实验和分子动力学模拟进一步验证了 5-HTR-ICL3-Arr2 复合物的模型。在我们的模型中,5-HTR-ICL3 区域内的两个丝氨酸残基(Ser281 和 Ser295)被发现占据了 Arr2 的正电口袋,这对于磷酸化和特定的 Arr2 结合可能是至关重要的。这些残基的序列比对研究表明,它们仅在哺乳动物 5-HTR 物种中保守。因此,我们的研究能够预测 5-HTR-Arr2 的分子构象,并确定长 ICL3 在信号转导过程中的作用,这对于设计靶向药物(偏向激动剂)以促进 GPCR-Arr2 信号转导、阻止应激和焦虑样障碍的影响可能是至关重要的。