Suppr超能文献

直肠灌注的金角径向稀疏并行磁共振成像:在低分化直肠癌诊断中的应用

Golden-angle radial sparse parallel magnetic resonance imaging of rectal perfusion: utility in the diagnosis of poorly differentiated rectal cancer.

作者信息

Zhou Mi, Huang Hongyun, Fan Yingying, Chen Meining, Wang Yuting, Gao Fabao

机构信息

Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.

Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Quant Imaging Med Surg. 2023 Aug 1;13(8):4826-4838. doi: 10.21037/qims-22-1244. Epub 2023 Jul 6.

Abstract

BACKGROUND

The objective of this retrospective investigation is to evaluate the diagnostic efficacy of a dual-parameter strategy that integrates either time-resolved angiography with stochastic trajectories (TWIST) or golden-angle radial sparse parallel (GRASP)-derived dynamic contrast agent-enhanced magnetic resonance imaging (DCE-MRI) with diffusion-weighted imaging (DWI) for the identification of poorly differentiated rectal cancer (RC). The purpose of this investigation is to contrast the aforementioned methodology with conventional single-factor assessments that rely solely on DWI, and ascertain its comparative efficacy.

METHODS

This study was not registered on a clinical trial platform. Consecutive individuals diagnosed with non-mucinous rectal adenocarcinoma through endoscopy-guided biopsy between December 2020 and October 2022 were involved in our study. These patients had also undergone DCE-MRI and DWI. The perfusion metrics of influx forward volume transfer constant (Ktrans) and rate constant (Kep), along with the apparent diffusion coefficient (ADC), were quantified by a pair of investigators. The study compared the area under the curve (AUC) of the receiver operating characteristic (ROC) for both sequences to identify poorly differentiated RC. The investigation incorporated patients who fulfilled the specified criteria. The inclusion criteria for the investigation were as follows: (I) a diagnosis of RC proved through pathological examination, either via endoscopically-guided biopsy or surgical resection; (II) availability of complete MRI images; (III) absence of any prior history of neoadjuvant chemoradiotherapy during the MRI scan.

RESULTS

Our investigation comprised a total of 179 participants. Compared to diffusion parameter alone, an integrated assessment of diffusion parameter (ADC) and perfusion parameters (Ktrans or Kep) obtained with GRASP leads to a superior diagnostic accuracy (AUC, 0.97±0.02 0.89±0.03, 0.97±0.02 0.89±0.03, P=0.005 and 0.003, respectively); however, there was no additional benefit from ADC with perfusion parameters obtained from TWIST (Ktrans or Kep) (AUC, 0.93±0.04 0.89±0.03, 0.93±0.03 0.89±0.03; P= 0.955 and 0.981, respectively, for the integration of ADC with Ktrans and Kep).

CONCLUSIONS

By integrating diffusion and perfusion features into a dual-parameter model, the GRASP method enhances the diagnostic efficacy of MRI in discriminating RCs with poor differentiation. Conversely, the TWIST approach did not yield the aforementioned outcome.

摘要

背景

本回顾性研究的目的是评估一种双参数策略的诊断效能,该策略将时间分辨血管造影与随机轨迹(TWIST)或金角径向稀疏并行(GRASP)衍生的动态对比剂增强磁共振成像(DCE-MRI)与扩散加权成像(DWI)相结合,用于识别低分化直肠癌(RC)。本研究的目的是将上述方法与仅依赖DWI的传统单因素评估进行对比,并确定其相对效能。

方法

本研究未在临床试验平台注册。纳入了2020年12月至2022年10月期间通过内镜引导活检确诊为非黏液性直肠腺癌的连续患者。这些患者还接受了DCE-MRI和DWI检查。由两名研究人员对流入前向容积转移常数(Ktrans)和速率常数(Kep)的灌注指标以及表观扩散系数(ADC)进行量化。该研究比较了两种序列的受试者操作特征(ROC)曲线下面积(AUC),以识别低分化RC。该研究纳入了符合特定标准的患者。该研究的纳入标准如下:(I)通过内镜引导活检或手术切除的病理检查证实为RC;(II)有完整的MRI图像;(III)在MRI扫描期间无新辅助放化疗史。

结果

我们的研究共有179名参与者。与单独的扩散参数相比,用GRASP获得的扩散参数(ADC)和灌注参数(Ktrans或Kep)的综合评估导致更高的诊断准确性(AUC分别为0.97±0.02对0.89±0.03、0.97±0.02对0.89±0.03,P = 0.005和0.003);然而,ADC与从TWIST获得的灌注参数(Ktrans或Kep)没有额外的益处(AUC分别为0.93±0.04对0.89±0.03、0.93±0.03对0.89±0.03;ADC与Ktrans和Kep整合时,P分别为0.955和0.981)。

结论

通过将扩散和灌注特征整合到双参数模型中,GRASP方法提高了MRI在鉴别低分化RC中的诊断效能。相反,TWIST方法未产生上述结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c4/10423373/e4c2b598690e/qims-13-08-4826-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验