Suppr超能文献

用于低剂量计算机断层扫描成像的动态可控残差生成对抗网络

Dynamic controllable residual generative adversarial network for low-dose computed tomography imaging.

作者信息

Xia Zhenyu, Liu Jin, Kang Yanqin, Wang Yong, Hu Dianlin, Zhang Yikun

机构信息

School of Computer and Information, Anhui Polytechnic University, Wuhu, China.

Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education, Nanjing, China.

出版信息

Quant Imaging Med Surg. 2023 Aug 1;13(8):5271-5293. doi: 10.21037/qims-22-1384. Epub 2023 Jun 29.

Abstract

BACKGROUND

Computed tomography (CT) imaging technology has become an indispensable auxiliary method in medical diagnosis and treatment. In mitigating the radiation damage caused by X-rays, low-dose computed tomography (LDCT) scanning is becoming more widely applied. However, LDCT scanning reduces the signal-to-noise ratio of the projection, and the resulting images suffer from serious streak artifacts and spot noise. In particular, the intensity of noise and artifacts varies significantly across different body parts under a single low-dose protocol.

METHODS

To improve the quality of different degraded LDCT images in a unified framework, we developed a generative adversarial learning framework with a dynamic controllable residual. First, the generator network consists of the basic subnetwork and the conditional subnetwork. Inspired by the dynamic control strategy, we designed the basic subnetwork to adopt a residual architecture, with the conditional subnetwork providing weights to control the residual intensity. Second, we chose the Visual Geometry Group Network-128 (VGG-128) as the discriminator to improve the noise artifact suppression and feature retention ability of the generator. Additionally, a hybrid loss function was specifically designed, including the mean square error (MSE) loss, structural similarity index metric (SSIM) loss, adversarial loss, and gradient penalty (GP) loss.

RESULTS

The results obtained on two datasets show the competitive performance of the proposed framework, with a 3.22 dB peak signal-to-noise ratio (PSNR) margin, 0.03 SSIM margin, and 0.2 contrast-to-noise ratio margin on the Challenge data and a 1.0 dB PSNR margin and 0.01 SSIM margin on the real data.

CONCLUSIONS

Experimental results demonstrated the competitive performance of the proposed method in terms of noise decrease, structural retention, and visual impression improvement.

摘要

背景

计算机断层扫描(CT)成像技术已成为医学诊断和治疗中不可或缺的辅助手段。为减轻X射线造成的辐射损伤,低剂量计算机断层扫描(LDCT)扫描的应用越来越广泛。然而,LDCT扫描降低了投影的信噪比,生成的图像存在严重的条纹伪影和斑点噪声。特别是,在单一低剂量协议下,不同身体部位的噪声和伪影强度差异显著。

方法

为在统一框架中提高不同退化LDCT图像的质量,我们开发了一种具有动态可控残差的生成对抗学习框架。首先,生成器网络由基本子网和条件子网组成。受动态控制策略启发,我们设计基本子网采用残差架构,条件子网提供权重以控制残差强度。其次,我们选择视觉几何组网络 - 128(VGG - 128)作为鉴别器,以提高生成器的噪声伪影抑制和特征保留能力。此外,专门设计了一种混合损失函数,包括均方误差(MSE)损失、结构相似性指数度量(SSIM)损失、对抗损失和梯度惩罚(GP)损失。

结果

在两个数据集上获得的结果显示了所提出框架的竞争性能,在挑战数据上峰值信噪比(PSNR) margin为3.22 dB,结构相似性指数(SSIM) margin为0.03,对比噪声比margin为0.2;在真实数据上PSNR margin为1.0 dB,SSIM margin为0.01。

结论

实验结果证明了所提出方法在降低噪声、保留结构和改善视觉效果方面的竞争性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce96/10423351/c38586680c5a/qims-13-08-5271-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验