McNicholas Brendon J, Tong Z Jaron, Bím Daniel, Turro Raymond F, Kazmierczak Nathanael P, Chalupský Jakub, Reisman Sarah E, Hadt Ryan G
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Inorg Chem. 2023 Aug 28;62(34):14010-14027. doi: 10.1021/acs.inorgchem.3c02048. Epub 2023 Aug 16.
dihalide [ = (3a,3a',8a,8a')-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8-indeno[1,2-]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp) and C(sp) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to Ni-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.
二卤化物[=(3a,3a',8a,8a')-2,2'-(环丙烷-1,1-二基)双(3a,8a-二氢-8-茚并[1,2-]恶唑)]配合物是一类不断增长的用于C(sp)和C(sp)亲电试剂对映选择性还原交叉偶联的第一行过渡金属催化剂的代表。最近的机理研究突出了这些基态交叉偶联反应的复杂性,但也揭示了源于单电子氧化还原的新反应途径及其对反应条件的显著敏感性。首次将一系列与电化学相结合的光谱方法应用于镍基预催化剂,以评估控制关键镍基氧化还原电位的特定配体场效应。我们还通过实验证明了DMA溶剂与催化相关镍配合物的配位作用。结果表明,配位作用有利于影响基于氧化还原的关键反应步骤,并防止其他有害的镍基平衡。结合电子结构计算,我们进一步提供了反应中间体前沿分子轨道能量与交叉偶联产率之间的直接关联。本文所阐述的观点表明,利用协同光谱和电化学方法可为催化剂配体设计及反应条件优化的合理化提供思路。