Suppr超能文献

通过适应卵巢癌细胞球体干性潜能的个体差异来优化卵巢癌细胞球体生物样本库的方案。

Protocol to optimize the biobanking of ovarian cancer organoids by accommodating patient-specific differences in stemness potential.

机构信息

Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner site Munich (LMU), 69120 Heidelberg, Germany.

Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.

出版信息

STAR Protoc. 2023 Sep 15;4(3):102484. doi: 10.1016/j.xpro.2023.102484. Epub 2023 Aug 15.

Abstract

We present a protocol for effective biobanking of epithelial ovarian cancer organoids, considering the heterogeneous clinical presentation and high recurrence rates. Our protocol involves parallel testing of three media to identify patient-specific optimal conditions. We describe steps for tissue dissociation, differential seeding, organoid cultivation, and biobanking. We outline procedures for fixation, embedding, and staining for confocal imaging. Furthermore, we demonstrate that brief cultivation of isolates in 2D on plastic enhances organoid-forming potential in selected lines, expanding their application scope. For complete details on the use and execution of this protocol, please refer to Hoffmann et al..

摘要

我们提出了一种上皮性卵巢癌类器官有效生物库建立的方案,考虑到其临床表现的异质性和高复发率。我们的方案包括平行测试三种培养基,以确定患者特异性的最佳条件。我们描述了组织解离、差异接种、类器官培养和生物库建立的步骤。我们概述了用于共聚焦成像的固定、包埋和染色程序。此外,我们证明了在塑料 2D 上短暂培养分离物可增强选定系中类器官形成的潜力,从而扩大了它们的应用范围。有关此方案使用和执行的完整详细信息,请参见 Hoffmann 等人的文章。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/10436238/fbe8f0ae089b/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验