Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
Sci Transl Med. 2023 Aug 16;15(709):eabq0603. doi: 10.1126/scitranslmed.abq0603.
An inhalable platform for messenger RNA (mRNA) therapeutics would enable minimally invasive and lung-targeted delivery for a host of pulmonary diseases. Development of lung-targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here, we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine--ester) (PACE) polyplexes for mRNA delivery using end-group modifications and polyethylene glycol. These polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for severe acute respiratory syndrome coronavirus 2 and found that intranasal vaccination with spike protein-encoding mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected susceptible mice from lethal viral challenge. Together, these results demonstrate the translational potential of PACE polyplexes for therapeutic delivery of mRNA to the lungs.
一种可吸入的信使 RNA(mRNA)治疗平台将能够实现多种肺部疾病的微创和肺部靶向给药。肺部靶向 mRNA 治疗的发展受到转染效率差和载体引起的病理风险的限制。在这里,我们报告了一种可吸入的聚合物载体,用于将治疗性 mRNA 递送到肺部。我们使用端基修饰和聚乙二醇对可生物降解的聚(胺-酯)(PACE)聚集体进行了优化,以实现 mRNA 的传递。这些聚集体实现了整个肺部高转染 mRNA,特别是在上皮细胞和抗原呈递细胞中。我们将这项技术应用于开发针对严重急性呼吸综合征冠状病毒 2 的粘膜疫苗,发现用编码刺突蛋白的 mRNA 聚集体进行鼻内接种可诱导强烈的细胞和体液适应性免疫,并可保护易感小鼠免受致命病毒攻击。总之,这些结果表明 PACE 聚集体在将 mRNA 递送到肺部进行治疗方面具有转化潜力。