Richter Nils, Chen Zongping, Tries Alexander, Prechtl Thorsten, Narita Akimitsu, Müllen Klaus, Asadi Kamal, Bonn Mischa, Kläui Mathias
Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany.
Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany.
Sci Rep. 2020 Feb 6;10(1):1988. doi: 10.1038/s41598-020-58660-w.
In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature that enables novel graphene-based electronics. Despite great progress, reliable and reproducible fabrication of single-ribbon field-effect transistors (FETs) is still a challenge, impeding the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on networks of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with large conductivity. We show formation of reliable Ohmic contacts and a yield of functional FETs close to unity by lamination of GNRs to electrodes. Modeling the charge transport in the networks reveals that transport is governed by inter-ribbon hopping mediated by nuclear tunneling, with a hopping length comparable to the physical GNR length. Overcoming the challenge of low-yield single-ribbon transistors by the networks and identifying the corresponding charge transport mechanism is a key step forward for functionalization of GNRs.
在石墨烯纳米带(GNRs)中,电荷载流子的横向限制打开了一个带隙,这是实现新型基于石墨烯的电子器件的关键特性。尽管取得了巨大进展,但可靠且可重复地制造单带场效应晶体管(FETs)仍然是一个挑战,这阻碍了对电荷传输的理解。在此,我们展示了基于纳米带网络的扶手椅型GNR-FETs的可重复制造,并使用具有高电导率的九原子宽、特别是五原子宽的GNRs分析了电荷传输机制。我们通过将GNRs层压到电极上,展示了可靠的欧姆接触的形成以及功能FETs接近100%的产率。对网络中的电荷传输进行建模表明,传输由核隧穿介导的带间跳跃控制,跳跃长度与物理GNR长度相当。通过网络克服低产率单带晶体管的挑战并确定相应的电荷传输机制是GNRs功能化向前迈出的关键一步。