Shanghai Sixth People's Hospital, Shanghai, People's Republic of China.
Duke University, Durham, NC, United States of America.
Phys Med Biol. 2023 Aug 17;68(17). doi: 10.1088/1361-6560/acecd2.
. Creating a clinically acceptable plan in the time-sensitive clinic workflow of brachytherapy is challenging. Deep learning-based dose prediction techniques have been reported as promising solutions with high efficiency and accuracy. However, current dose prediction studies mainly target EBRT which are inappropriate for brachytherapy, the model designed specifically for brachytherapy has not yet well-established.. To predict dose distribution in brachytherapy using a novel Squeeze and Excitation Attention Net (SE_AN) model.. We hypothesized the tracks ofIr inside applicators are essential for brachytherapy dose prediction. To emphasize the applicator contribution, a novel SE module was integrated into a Cascaded UNet to recalibrate informative features and suppress less useful ones. The Cascaded UNet consists of two stacked UNets, with the first designed to predict coarse dose distribution and the second added for fine-tuning 250 cases including all typical clinical applicators were studied, including vaginal, tandem and ovoid, multi-channel, and free needle applicators. The developed SE_AN was subsequently compared to the classic UNet and classic Cascaded UNet (without SE module) models. The model performance was evaluated by comparing the predicted dose against the clinically approved plans using mean absolute error (MAE) of DVH metrics, includingand.. The MAEs of DVH metrics demonstrated that SE_AN accurately predicted the dose with 0.37 ± 0.25 difference for HRCTV, 0.23 ± 0.14 difference for bladder, and 0.28 ± 0.20 difference for rectum. In comparison studies, UNet achieved 0.34 ± 0.24 for HRCTV, 0.25 ± 0.20 for bladder, 0.25 ± 0.21 for rectum, and Cascaded UNet achieved 0.42 ± 0.31 for HRCTV, 0.24 ± 0.19 for bladder, 0.23 ± 0.19 for rectum.. We successfully developed a method specifically for 3D brachytherapy dose prediction. Our model demonstrated comparable performance to clinical plans generated by experienced dosimetrists. The developed technique is expected to improve the standardization and quality control of brachytherapy treatment planning.
. 在腔内近距离治疗时间敏感的临床工作流程中创建一个可接受的计划是具有挑战性的。基于深度学习的剂量预测技术被报道为一种高效、准确的有前途的解决方案。然而,目前的剂量预测研究主要针对 EBRT,这并不适合近距离治疗,专门为近距离治疗设计的模型尚未得到很好的建立。为了使用新的挤压和激励注意力网络(SE_AN)模型预测近距离治疗中的剂量分布。我们假设 Ir 在施源器中的轨迹对于近距离治疗剂量预测是至关重要的。为了强调施源器的贡献,我们将一个新的 SE 模块集成到级联 U-Net 中,以重新校准信息特征并抑制不那么有用的特征。级联 U-Net 由两个堆叠的 U-Net 组成,第一个用于预测粗剂量分布,第二个用于精细调整 250 个案例,包括所有典型的临床施源器。研究了包括阴道、 tandem 和卵圆、多通道和自由针施源器在内的开发的 SE_AN 随后与经典 U-Net 和经典级联 U-Net(无 SE 模块)模型进行了比较。通过比较临床批准计划的 DVH 指标的平均绝对误差(MAE)来评估模型性能,包括 HRCTV、膀胱和直肠的 D90、D100 和 D200。DVH 指标的 MAE 表明,SE_AN 可以准确预测剂量,HRCTV 的差异为 0.37 ± 0.25,膀胱为 0.23 ± 0.14,直肠为 0.28 ± 0.20。在比较研究中,U-Net 分别实现了 HRCTV 为 0.34 ± 0.24、膀胱为 0.25 ± 0.20、直肠为 0.25 ± 0.21,级联 U-Net 分别实现了 HRCTV 为 0.42 ± 0.31、膀胱为 0.24 ± 0.19、直肠为 0.23 ± 0.19。我们成功地开发了一种专门用于 3D 近距离治疗剂量预测的方法。我们的模型表现与经验丰富的剂量师生成的临床计划相当。该技术有望提高近距离治疗计划的标准化和质量控制。