Suppr超能文献

基于经直肠超声的高剂量率前列腺近距离治疗即时计划质量预测

Instant plan quality prediction on transrectal ultrasound for high-dose-rate prostate brachytherapy.

作者信息

Wang Tonghe, Feng Yining, Beaudry Joel, Aramburu Nunez David, Gorovets Daniel, Kollmeier Marisa, Damato Antonio L

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065.

出版信息

Brachytherapy. 2025 Jan-Feb;24(1):171-176. doi: 10.1016/j.brachy.2024.10.009. Epub 2024 Nov 20.

Abstract

PURPOSE

We investigated the feasibility of AI to provide an instant feedback of the potential plan quality based on live needle placement, and before planning is initiated.

MATERIALS AND METHODS

We utilized YOLOv8 to perform automatic organ segmentation and needle detection on 2D transrectal ultrasound images. The segmentation and detection results for each patient were then fed into a plan quality prediction model based on ResNet101. Its outputs are values of selected dose volume metrics. Imaging and plan data from 504 prostate HDR boost patients (456 for training, 24 for validation, and 24 for testing) treated in our clinic were included in this study. The segmentation, needle detection, and prediction results were compared to the clinical results (ground truth).

RESULTS

For prediction model, the p-values of t-test between the predicted values and ground truth for either rectum D2cc or urethra D20% were larger than 0.8. The sensitivity of prediction model in finding implant geometries resulting in below-median rectum D2cc and urethra D20% were 83% and 87%.

CONCLUSION

The proposed method has great potential to facilitate the current prostate HDR brachytherapy workflows by providing valuable feedback during needle insertion, and facilitating decision making of where and if additional needles are required.

摘要

目的

我们研究了人工智能在基于实时针放置且在计划开始前提供潜在计划质量即时反馈的可行性。

材料与方法

我们利用YOLOv8在二维经直肠超声图像上进行自动器官分割和针检测。然后将每位患者的分割和检测结果输入基于ResNet101的计划质量预测模型。其输出为选定剂量体积指标的值。本研究纳入了我们诊所治疗的504例前列腺高剂量率后装治疗患者的影像和计划数据(456例用于训练,24例用于验证,24例用于测试)。将分割、针检测和预测结果与临床结果(真实情况)进行比较。

结果

对于预测模型,直肠D2cc或尿道D20%的预测值与真实情况之间的t检验p值均大于0.8。预测模型发现导致直肠D2cc和尿道D20%低于中位数的植入几何形状的灵敏度分别为83%和87%。

结论

所提出的方法具有很大潜力,可通过在针插入过程中提供有价值的反馈,并促进关于是否需要额外针以及在何处需要额外针的决策,来推动当前前列腺高剂量率近距离放射治疗工作流程。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验