Suppr超能文献

用于检测脑层和柱层激活的亚毫米 fMRI 采集技术。

Submillimeter fMRI Acquisition Techniques for Detection of Laminar and Columnar Level Brain Activation.

机构信息

Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.

RWTH Aachen University, Aachen, Germany.

出版信息

J Magn Reson Imaging. 2024 Mar;59(3):747-766. doi: 10.1002/jmri.28911. Epub 2023 Aug 17.

Abstract

Since the first demonstration in the early 1990s, functional MRI (fMRI) has emerged as one of the most powerful, noninvasive neuroimaging tools to probe brain functions. Subsequently, fMRI techniques have advanced remarkably, enabling the acquisition of functional signals with a submillimeter voxel size. This innovation has opened the possibility of investigating subcortical neural activities with respect to the cortical depths or cortical columns. For this purpose, numerous previous works have endeavored to design suitable functional contrast mechanisms and dedicated imaging techniques. Depending on the choice of the functional contrast, functional signals can be detected with high sensitivity or with improved spatial specificity to the actual activation site, and the pertaining issues have been discussed in a number of earlier works. This review paper primarily aims to provide an overview of the subcortical fMRI techniques that allow the acquisition of functional signals with a submillimeter resolution. Here, the advantages and disadvantages of the imaging techniques will be described and compared. We also summarize supplementary imaging techniques that assist in the analysis of the subcortical brain activation for more accurate mapping with reduced geometric deformation. This review suggests that there is no single universally accepted method as the gold standard for subcortical fMRI. Instead, the functional contrast and the corresponding readout imaging technique should be carefully determined depending on the purpose of the study. Due to the technical limitations of current fMRI techniques, most subcortical fMRI studies have only targeted partial brain regions. As a future prospect, the spatiotemporal resolution of fMRI will be pushed to satisfy the community's need for a deeper understanding of whole-brain functions and the underlying connectivity in order to achieve the ultimate goal of a time-resolved and layer-specific spatial scale. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

摘要

自 20 世纪 90 年代初首次演示以来,功能磁共振成像(fMRI)已成为探测大脑功能的最强大、非侵入性神经影像学工具之一。随后,fMRI 技术取得了显著进展,能够以亚毫米体素大小获取功能信号。这项创新使人们有可能研究皮质深度或皮质柱的皮质下神经活动。为此,许多先前的工作都致力于设计合适的功能对比机制和专用成像技术。根据功能对比的选择,功能信号可以以高灵敏度或提高对实际激活部位的空间特异性来检测,并且在许多早期工作中已经讨论了相关问题。本综述论文主要旨在提供允许以亚毫米分辨率获取功能信号的皮质下 fMRI 技术的概述。在这里,将描述和比较成像技术的优缺点。我们还总结了辅助皮质下脑激活分析的补充成像技术,以实现更准确的映射并减少几何变形。该综述表明,没有一种单一的被普遍接受的方法作为皮质下 fMRI 的金标准。相反,应根据研究目的仔细确定功能对比和相应的读出成像技术。由于当前 fMRI 技术的技术限制,大多数皮质下 fMRI 研究仅针对部分脑区。作为未来的展望,fMRI 的时空分辨率将被推进,以满足科学界对全脑功能和基础连通性的深入理解的需求,从而实现时间分辨和分层特定空间尺度的最终目标。证据水平:1 技术功效:阶段 1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验