Putri Arcellia Farosyah, Chandler Colin, Tocher Jennifer
Nurs Res. 2023;72(6):481-488. doi: 10.1097/NNR.0000000000000686. Epub 2023 Aug 17.
A realist approach has gained popularity in evaluation research, particularly in understanding causal explanations of how a program works (or not), the circumstances, and the observed outcomes. In qualitative inquiry, the approach has contributed to better theoretically based explanations regarding causal interactions.
The aim of this study was to discuss how we conducted a realist-informed data analysis to explore the causal interactions within qualitative data.
We demonstrated a four-step realist approach of retroductive theorizing in qualitative data analysis using a concrete example from our empirical research rooted in the critical realism philosophical stance. These steps include (a) category identification, (b) elaboration of context-mechanism-outcome configuration, (c) demi-regularities identification, and (d) generative mechanism refinement.
The four-step qualitative realist data analysis underpins the causal interactions of important factors and reveals the underlying mechanisms. The steps produce comprehensive causal explanations that can be used by related parties-especially when making complex decisions that may affect wide communities.
The core process of realist data analysis is retroductive theorizing. The four-step qualitative realist data analysis facilitates this theorizing by allowing the researcher to identify (a) patterns, (b) fluctuation of patterns, (c) mechanisms from collected data, and (d) to confirm proposed mechanisms.
现实主义方法在评估研究中越来越受欢迎,特别是在理解项目如何运作(或不运作)、相关情况及观察到的结果的因果解释方面。在定性研究中,该方法有助于形成基于理论的更好的因果互动解释。
本研究旨在探讨如何进行基于现实主义的数据分析,以探索定性数据中的因果互动。
我们使用来自基于批判现实主义哲学立场的实证研究的具体例子,展示了定性数据分析中回溯性理论构建的四步现实主义方法。这些步骤包括:(a)类别识别;(b)阐述背景 - 机制 - 结果配置;(c)识别半常规性;(d)完善生成机制。
四步定性现实主义数据分析为重要因素的因果互动提供了支撑,并揭示了潜在机制。这些步骤产生了全面的因果解释,可供相关方使用,特别是在做出可能影响广泛群体的复杂决策时。
现实主义数据分析的核心过程是回溯性理论构建。四步定性现实主义数据分析通过让研究人员识别(a)模式、(b)模式的波动、(c)从收集的数据中识别机制以及(d)确认所提出的机制,促进了这一理论构建。