Suppr超能文献

健康职业教育研究中定性数据的现实主义分析。

Realist analysis of qualitative data in health professions education research.

作者信息

Rees Charlotte E, Proctor Dominic W, Nguyen Van N B, Ottrey Ella, Mattick Karen L

机构信息

School of Health Sciences, College of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia.

Monash Centre for Scholarship in Health Education (MCSHE), Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia.

出版信息

Med Educ. 2025 May;59(5):503-518. doi: 10.1111/medu.15482. Epub 2024 Aug 19.

Abstract

BACKGROUND

Qualitative realist analysis is gaining in popularity in health professions education research (HPER) as part of theory-driven program evaluation. Although realist approaches such as syntheses and evaluations typically advocate mixed methods, qualitative data dominate currently. Various forms of qualitative analysis have been articulated in HPER, yet realist analysis has not. Although realist analysis is interpretive, it moves beyond description to explain generative causation employing retroductive theorising. Ultimately, it attempts to build and/or 'test' (confirm, refute or refine) theory about how, why, for whom, when and to what extent programs work using the context-mechanism-outcome configuration (CMOC) heuristic. This paper aims to help readers better critique, conduct and report qualitative realist analysis.

REALIST ANALYSIS METHODS

We describe four fundamentals of qualitative realist analysis: (1) simultaneous data collection/analysis; (2) retroductive theorising; (3) configurational analysis (involving iterative phases of identifying CMOCs, synthesising CMOCs into demi-regularities and translating demi-regularities into program theory); and (4) realist analysis quality (relevance, rigour, richness). Next, we provide a critical analysis of realist analyses employed in 15 HPER outputs-three evaluations and 12 syntheses. Finally, drawing on our understandings of realist literature and our experiences of conducting qualitative realist analysis (both evaluations and syntheses), we articulate three common analysis challenges (coding, consolidation and mapping) and strategies to mitigate these challenges (teamwork, reflexivity and consultation, use of data analysis software and graphical representations of program theory).

CONCLUSIONS

Based on our critical analysis of the literature and realist analysis experiences, we encourage researchers, peer reviewers and readers to better understand qualitative realist analysis fundamentals. Realist analysts should draw on relevant realist reporting standards and literature on realist analysis to improve the quality and reporting of realist analysis. Through better understanding the common challenges and mitigation strategies for realist analysis, we can collectively improve the quality of realist analysis in HPER.

摘要

背景

作为理论驱动项目评估的一部分,质性实在论分析在卫生专业教育研究(HPER)中越来越受欢迎。尽管诸如综合和评估等实在论方法通常提倡混合方法,但目前质性数据占主导地位。HPER中已经阐述了各种形式的质性分析,但实在论分析尚未得到阐述。尽管实在论分析具有解释性,但它超越了描述,采用回溯性理论构建来解释生成性因果关系。最终,它试图使用背景-机制-结果配置(CMOC)启发法来构建和/或“检验”(证实、反驳或完善)关于项目如何、为何、针对谁、何时以及在何种程度上起作用的理论。本文旨在帮助读者更好地批判、进行和报告质性实在论分析。

实在论分析方法

我们描述了质性实在论分析的四个基本要素:(1)同步数据收集/分析;(2)回溯性理论构建;(3)配置分析(包括识别CMOCs、将CMOCs综合成半常规性以及将半常规性转化为项目理论的迭代阶段);以及(4)实在论分析质量(相关性、严谨性、丰富性)。接下来,我们对15项HPER成果中采用的实在论分析进行批判性分析——三项评估和十二项综合。最后,基于我们对实在论文献的理解以及进行质性实在论分析(评估和综合)的经验,我们阐述了三个常见的分析挑战(编码、整合和映射)以及减轻这些挑战的策略(团队合作、反思性和咨询、使用数据分析软件以及项目理论的图形表示)。

结论

基于我们对文献的批判性分析和实在论分析经验,我们鼓励研究人员、同行评审人员和读者更好地理解质性实在论分析的基本要素。实在论分析人员应借鉴相关的实在论报告标准和实在论分析文献,以提高实在论分析的质量和报告水平。通过更好地理解实在论分析的常见挑战和缓解策略,我们可以共同提高HPER中实在论分析的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ad2/11976211/cce714ba5b11/MEDU-59-503-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验