Suppr超能文献

制定一个基于伦理框架的工具,用于评估基于电子健康记录的大数据研究中的偏差:研究方案。

Developing an ethical framework-guided instrument for assessing bias in EHR-based Big Data studies: a research protocol.

机构信息

Health Promotion Education and Behavior, University of South Carolina, Columbia, South Carolina, USA.

Department of Philosophy, University of South Carolina, Columbia, South Carolina, USA.

出版信息

BMJ Open. 2023 Aug 17;13(8):e070870. doi: 10.1136/bmjopen-2022-070870.

Abstract

INTRODUCTION

The emergence of Big Data health research has exponentially advanced the fields of medicine and public health but has also faced many ethical challenges. One of most worrying but still under-researched aspects of the ethical issues is the risk of potential biases in data sets (eg, electronic health records (EHR) data) as well as in the data curation and acquisition cycles. This study aims to develop, refine and pilot test an ethical framework-guided instrument for assessing bias in Big Data research using EHR data sets.

METHODS AND ANALYSIS

Ethical analysis and instrument development (ie, the EHR bias assessment guideline) will be implemented through an iterative process composed of literature/policy review, content analysis and interdisciplinary dialogues and discussion. The ethical framework and EHR bias assessment guideline will be iteratively refined and integrated with preliminary summaries of results in a way that informs subsequent research. We will engage data curators, end-user researchers, healthcare workers and patient representatives throughout all iterative cycles using various formats including in-depth interviews of key stakeholders, panel discussions and charrette workshops. The developed EHR bias assessment guideline will be pilot tested in an existing National Institutes of Health (NIH) funded Big Data HIV project (R01AI164947).

ETHICS AND DISSEMINATION

The study was approved by Institutional Review Boards at the University of South Carolina (Pro00122501). Informed consent will be provided by the participants in the in-depth interviews. Study findings will be disseminated with key stakeholders, presented at relevant workshops and academic conferences, and published in peer-reviewed journals.

摘要

简介

大数据健康研究的出现极大地推动了医学和公共卫生领域的发展,但也面临着许多伦理挑战。其中最令人担忧但仍未得到充分研究的伦理问题之一是数据集(例如电子健康记录 (EHR) 数据)以及数据管理和采集周期中潜在偏差的风险。本研究旨在开发、完善和试点测试一种基于伦理框架的工具,用于评估使用 EHR 数据集进行的大数据研究中的偏差。

方法与分析

伦理分析和仪器开发(即 EHR 偏差评估指南)将通过一个迭代过程来实施,该过程由文献/政策审查、内容分析以及跨学科对话和讨论组成。伦理框架和 EHR 偏差评估指南将通过与结果的初步摘要进行迭代细化和整合,以告知后续研究。我们将通过各种形式(包括对主要利益相关者的深入访谈、小组讨论和专题研讨会)在所有迭代周期中让数据管理者、最终用户研究人员、医疗保健工作者和患者代表参与进来。开发的 EHR 偏差评估指南将在现有的美国国立卫生研究院 (NIH) 资助的大数据 HIV 项目 (R01AI164947) 中进行试点测试。

伦理与传播

该研究已获得南卡罗来纳大学机构审查委员会的批准(Pro00122501)。深度访谈中的参与者将提供知情同意。研究结果将与主要利益相关者分享,在相关研讨会和学术会议上展示,并发表在同行评议的期刊上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8d3/10441074/1ad9c81f41a1/bmjopen-2022-070870f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验