Suppr超能文献

利用 Monopogen 对单细胞测序数据进行单核苷酸变异 calling。

Single-nucleotide variant calling in single-cell sequencing data with Monopogen.

机构信息

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.

出版信息

Nat Biotechnol. 2024 May;42(5):803-812. doi: 10.1038/s41587-023-01873-x. Epub 2023 Aug 17.

Abstract

Single-cell omics technologies enable molecular characterization of diverse cell types and states, but how the resulting transcriptional and epigenetic profiles depend on the cell's genetic background remains understudied. We describe Monopogen, a computational tool to detect single-nucleotide variants (SNVs) from single-cell sequencing data. Monopogen leverages linkage disequilibrium from external reference panels to identify germline SNVs and detects putative somatic SNVs using allele cosegregating patterns at the cell population level. It can identify 100 K to 3 M germline SNVs achieving a genotyping accuracy of 95%, together with hundreds of putative somatic SNVs. Monopogen-derived genotypes enable global and local ancestry inference and identification of admixed samples. It identifies variants associated with cardiomyocyte metabolic levels and epigenomic programs. It also improves putative somatic SNV detection that enables clonal lineage tracing in primary human clonal hematopoiesis. Monopogen brings together population genetics, cell lineage tracing and single-cell omics to uncover genetic determinants of cellular processes.

摘要

单细胞组学技术能够实现对各种细胞类型和状态的分子特征进行描述,但细胞的遗传背景如何影响转录组和表观基因组图谱仍有待研究。我们描述了 Monopogen,这是一种从单细胞测序数据中检测单核苷酸变异 (SNV) 的计算工具。Monopogen 利用来自外部参考面板的连锁不平衡来识别种系 SNV,并通过细胞群体水平上的等位基因共分离模式来检测可能的体细胞 SNV。它可以识别 100K 到 3M 个种系 SNV,达到 95%的基因分型准确性,同时还可以识别数百个可能的体细胞 SNV。Monopogen 衍生的基因型可用于进行全基因组和局部亲缘关系推断以及混合样本的鉴定。它还可以识别与心肌细胞代谢水平和表观基因组程序相关的变体。它还可以提高可能的体细胞 SNV 检测能力,从而实现原发性人类克隆性造血中的克隆谱系追踪。Monopogen 将群体遗传学、细胞谱系追踪和单细胞组学结合在一起,以揭示细胞过程的遗传决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36f1/11098741/6de271e82fbf/41587_2023_1873_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验