Sun Liang, Ma Qianyi, Cai Chunhui, Labaf Maryam, Jain Ashish, Dias Caroline, Rockowitz Shira, Sliz Piotr
Research Informatics, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA.
Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Int J Mol Sci. 2025 May 30;26(11):5297. doi: 10.3390/ijms26115297.
Single-cell transcriptomics data are analyzed using two popular tools, Seurat and Scanpy. Multiple separate tools are used downstream of Seurat and Scanpy cell annotation to study cell differentiation and communication, including cell proportion difference analysis between conditions, pseudotime and trajectory analyses to study cell transition, and cell-cell communication analysis. To automate the integrative cell differentiation and communication analyses of single-cell RNA-seq data, we developed a single-cell RNA-seq downstream analysis pipeline called "scDown". This R package includes cell proportion difference analysis, cell-cell communication analysis, pseudotime analysis, and RNA velocity analysis. Both Seurat and Scanpy annotated single-cell RNA-seq data are accepted in this pipeline. We applied scDown to a published dataset and identified a unique, previously undiscovered signature of neuronal inflammatory signaling associated with a rare genetic neurodevelopmental disorder. These findings were not identified with a simple implementation of Seurat differential gene expression analysis, illustrating the value of our pipeline in biological discovery. scDown can be broadly utilized in downstream analyses of scRNA-seq data, particularly in rare diseases.
单细胞转录组学数据使用两种流行的工具Seurat和Scanpy进行分析。在Seurat和Scanpy细胞注释之后,使用多个独立的工具来研究细胞分化和细胞间通讯,包括不同条件下的细胞比例差异分析、用于研究细胞转变的伪时间和轨迹分析,以及细胞间通讯分析。为了自动化单细胞RNA测序数据的综合细胞分化和通讯分析,我们开发了一个名为“scDown”的单细胞RNA测序下游分析流程。这个R包包括细胞比例差异分析、细胞间通讯分析、伪时间分析和RNA速度分析。该流程接受Seurat和Scanpy注释的单细胞RNA测序数据。我们将scDown应用于一个已发表的数据集,并鉴定出与一种罕见的遗传性神经发育障碍相关的独特的、先前未被发现的神经元炎症信号特征。这些发现通过简单实施Seurat差异基因表达分析并未得到,这说明了我们的流程在生物学发现中的价值。scDown可广泛应用于scRNA测序数据的下游分析,尤其是在罕见疾病中。