Suppr超能文献

人工神经网络可预测骨质疏松症患者非骨水泥型全髋关节置换术的早期失败。

Artificial Neural Networks Can Predict Early Failure of Cementless Total Hip Arthroplasty in Patients With Osteoporosis.

作者信息

Klemt Christian, Yeo Ingwon, Cohen-Levy Wayne Brian, Melnic Christopher M, Habibi Yasamin, Kwon Young-Min

机构信息

From the Bioengineering Department, Department of Orthopaedic Surgery, Massachusetts General Hospital Harvard Medical School, Boston, MA.

出版信息

J Am Acad Orthop Surg. 2022 May 15;30(10):467-475. doi: 10.5435/JAAOS-D-21-00775. Epub 2022 Feb 23.

Abstract

BACKGROUND

Total hip arthroplasty (THA) done in the aging population is associated with osteoporosis-related complications. The altered bone density in osteoporotic patients is a risk factor for revision surgery. This study aimed to develop and validate machine learning (ML) models to predict revision surgery in patients with osteoporosis after primary noncemented THA.

METHODS

We retrospectively reviewed a consecutive series of 350 patients with osteoporosis (T-score less than or equal to -2.5) who underwent primary noncemented THA at a tertiary referral center. All patients had a minimum 2-year follow-up (range: 2.1 to 5.6). Four ML algorithms were developed to predict the probability of revision surgery, and these were assessed by discrimination, calibration, and decision curve analysis.

RESULTS

The overall incidence of revision surgery was 5.2% at a mean follow-up of 3.7 years after primary noncemented THA in osteoporotic patients. Revision THA was done because of periprosthetic fracture in nine patients (50%), aseptic loosening/subsidence in five patients (28%), periprosthetic joint infection in two patients (11%) and dislocation in two patients (11%). The strongest predictors for revision surgery in patients after primary noncemented THA were female sex, BMI (>35 kg/m2), age (>70 years), American Society of Anesthesiology score (≥3), and T-score. All four ML models demonstrated good model performance across discrimination (AUC range: 0.78 to 0.81), calibration, and decision curve analysis.

CONCLUSION

The ML models presented in this study demonstrated high accuracy for the prediction of revision surgery in osteoporotic patients after primary noncemented THA. The presented ML models have the potential to be used by orthopaedic surgeons for preoperative patient counseling and optimization to improve the outcomes of primary noncemented THA in osteoporotic patients.

摘要

背景

在老年人群中进行的全髋关节置换术(THA)与骨质疏松相关并发症有关。骨质疏松患者骨密度的改变是翻修手术的一个危险因素。本研究旨在开发并验证机器学习(ML)模型,以预测初次非骨水泥型THA术后骨质疏松患者的翻修手术。

方法

我们回顾性分析了在一家三级转诊中心接受初次非骨水泥型THA的350例骨质疏松患者(T值小于或等于-2.5)的连续病例系列。所有患者至少随访2年(范围:2.1至5.6年)。开发了四种ML算法来预测翻修手术的概率,并通过区分度、校准和决策曲线分析对其进行评估。

结果

骨质疏松患者初次非骨水泥型THA术后平均随访3.7年时,翻修手术的总体发生率为5.2%。翻修THA的原因包括9例(50%)假体周围骨折、5例(28%)无菌性松动/下沉、2例(11%)假体周围关节感染和2例(11%)脱位。初次非骨水泥型THA术后患者翻修手术的最强预测因素为女性、体重指数(>35 kg/m2)、年龄(>70岁)、美国麻醉医师协会评分(≥3)和T值。所有四种ML模型在区分度(AUC范围:0.78至0.81)、校准和决策曲线分析方面均表现出良好的模型性能。

结论

本研究中提出的ML模型在预测初次非骨水泥型THA术后骨质疏松患者的翻修手术方面显示出较高的准确性。所提出的ML模型有可能被骨科医生用于术前患者咨询和优化,以改善骨质疏松患者初次非骨水泥型THA的手术效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验