Bayer Crop Science, Soda Springs, ID, United States of America.
Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN, United States of America.
PLoS One. 2023 Aug 18;18(8):e0288729. doi: 10.1371/journal.pone.0288729. eCollection 2023.
Varieties that tolerate low nitrogen (N) application rates can reduce fertilizer costs, minimize nitrate leaching and runoff losses, and lower overall CO2 emissions associated with fertilizer manufacturing. The goal of our research is to show the usefulness of path models to identify key phenotypic traits for screening plants with a tolerance to low N application rates. We grew tolerant and sensitive cultivars of poinsettia (Euphorbia pulcherrima) using a water-soluble fertilizer (15-5-15 Cal Mag) in both optimal (electrical conductivity of 2.5 dS·m-1) and N-deficient (electrical conductivity of 0.75 dS·m-1) treatments and measured 24 different traits at the cellular, leaf, and whole-plant scales in both cultivars and treatments. The experiment was laid out as a split-plot design with N treatments as main plots and cultivars as sub-plots, with five replications. Path analysis was conducted to develop sequential relationships among these traits. Statistical comparisons between tolerant and sensitive cultivars in the N-deficient treatment indicated an increase in shoot biomass (19.9 vs 14.4 g), leaf area (2775 vs 1824 cm2), leaf dry weight (14.7 vs 10.0 g), lateral root dry weight (3.7 vs 2.4 g), light-saturated photosynthesis (14.5 vs 10.1 μmol∙m-2∙s-1), maximum electron transport rate (119 vs 89 μmol∙m-2∙s-1), chlorophyll content (28.1 vs 12.9 g∙100g-1), leaf N content (27.5 vs 19.9 mg∙g-1), and fine root N content (26.1 vs 20.9 mg∙g-1), and a decrease in anthocyanin content (0.07 vs 0.16 ΔOD∙g-1). The path model indicated that an increase in the lateral root growth and fine root N content can lead to an increase in the leaf N content, in the N-deficient treatment. There were three separate paths that connected higher leaf N content to increased shoot biomass. These paths were mediated by the levels of anthocyanin, chlorophylls, and light-saturated photosynthesis rate (or rubisco capacity). The light-saturated photosynthesis model suggested that the increased uptake of N by fine roots in the tolerant cultivar was likely supported by the photosynthates translocated from the shoot to the root. Leaf N content was associated with multiple plant responses in the N-deficient treatment, and can be a useful screening trait for developing new cultivars, especially in marker-assisted molecular breeding.
耐受低氮(N)施用量的品种可以降低肥料成本,最大限度地减少硝酸盐淋失和径流损失,并降低与肥料制造相关的整体二氧化碳排放。我们研究的目标是展示路径模型在识别对低 N 施用量具有耐受性的植物的关键表型特征方面的有用性。我们使用一种水溶性肥料(15-5-15 Cal Mag)在最佳条件(电导率为 2.5 dS·m-1)和 N 缺乏条件(电导率为 0.75 dS·m-1)下种植了耐受和敏感的一品红(Euphorbia pulcherrima)品种,并在这两个品种和处理中在细胞、叶片和整个植株尺度上测量了 24 个不同的特征。该实验采用裂区设计,以 N 处理为主区,品种为副区,有 5 个重复。进行路径分析以建立这些特征之间的顺序关系。在 N 缺乏处理中,对耐受和敏感品种进行的统计比较表明,地上生物量(19.9 对 14.4 g)、叶面积(2775 对 1824 cm2)、叶片干重(14.7 对 10.0 g)、侧根干重(3.7 对 2.4 g)、光饱和光合作用(14.5 对 10.1 μmol·m-2·s-1)、最大电子传递率(119 对 89 μmol·m-2·s-1)、叶绿素含量(28.1 对 12.9 g·100g-1)、叶片 N 含量(27.5 对 19.9 mg·g-1)和细根 N 含量(26.1 对 20.9 mg·g-1)增加,而花色苷含量(0.07 对 0.16 ΔOD·g-1)降低。路径模型表明,在 N 缺乏处理中,侧根生长和细根 N 含量的增加可以导致叶片 N 含量的增加。有三个单独的路径将较高的叶片 N 含量与增加的地上生物量联系起来。这些路径由花色苷、叶绿素和光饱和光合作用率(或 RuBP 羧化酶能力)的水平介导。光饱和光合作用模型表明,在耐受品种中,细根对 N 的吸收增加可能是由从地上部分转运到根部分泌的光合产物支持的。叶片 N 含量与 N 缺乏处理中的多种植物反应有关,可作为开发新品种的有用筛选特征,尤其是在标记辅助分子育种中。