Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA.
Plant Physiol. 2023 Nov 22;193(4):2459-2479. doi: 10.1093/plphys/kiad460.
Source and sink interactions play a critical but mechanistically poorly understood role in the regulation of senescence. To disentangle the genetic and molecular mechanisms underlying source-sink-regulated senescence (SSRS), we performed a phenotypic, transcriptomic, and systems genetics analysis of senescence induced by the lack of a strong sink in maize (Zea mays). Comparative analysis of genotypes with contrasting SSRS phenotypes revealed that feedback inhibition of photosynthesis, a surge in reactive oxygen species, and the resulting endoplasmic reticulum (ER) stress were the earliest outcomes of weakened sink demand. Multienvironmental evaluation of a biparental population and a diversity panel identified 12 quantitative trait loci and 24 candidate genes, respectively, underlying SSRS. Combining the natural diversity and coexpression networks analyses identified 7 high-confidence candidate genes involved in proteolysis, photosynthesis, stress response, and protein folding. The role of a cathepsin B like protease 4 (ccp4), a candidate gene supported by systems genetic analysis, was validated by analysis of natural alleles in maize and heterologous analyses in Arabidopsis (Arabidopsis thaliana). Analysis of natural alleles suggested that a 700-bp polymorphic promoter region harboring multiple ABA-responsive elements is responsible for differential transcriptional regulation of ccp4 by ABA and the resulting variation in SSRS phenotype. We propose a model for SSRS wherein feedback inhibition of photosynthesis, ABA signaling, and oxidative stress converge to induce ER stress manifested as programed cell death and senescence. These findings provide a deeper understanding of signals emerging from loss of sink strength and offer opportunities to modify these signals to alter senescence program and enhance crop productivity.
源库互作对衰老的调控起着至关重要但机制上理解甚少的作用。为了阐明源库调控衰老(SSRS)的遗传和分子机制,我们对玉米(Zea mays)中由于缺乏强库而引起的衰老进行了表型、转录组和系统遗传学分析。对具有不同 SSRS 表型的基因型进行比较分析表明,光合作用的反馈抑制、活性氧的激增以及由此产生的内质网(ER)应激是削弱库需求的最早结果。对双亲群体和多样性面板的多环境评估分别确定了 12 个与 SSRS 相关的数量性状位点和 24 个候选基因。结合自然多样性和共表达网络分析,确定了 7 个高度置信的候选基因,它们参与蛋白水解、光合作用、应激反应和蛋白质折叠。系统遗传分析支持的候选基因半胱氨酸蛋白酶 B 样蛋白酶 4(ccp4)的作用通过对玉米天然等位基因的分析和拟南芥(Arabidopsis thaliana)的异源分析得到了验证。对天然等位基因的分析表明,含有多个 ABA 反应元件的 700bp 多态启动子区域负责 ccp4 的差异转录调控,这是由 ABA 引起的,从而导致 SSRS 表型的差异。我们提出了一个 SSRS 模型,其中光合作用的反馈抑制、ABA 信号和氧化应激汇聚在一起,导致 ER 应激表现为程序性细胞死亡和衰老。这些发现加深了我们对从源库强度丧失中出现的信号的理解,并为改变这些信号以改变衰老程序和提高作物生产力提供了机会。