Suppr超能文献

玉米源库调控衰老的遗传结构。

Genetic architecture of source-sink-regulated senescence in maize.

机构信息

Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.

School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA.

出版信息

Plant Physiol. 2023 Nov 22;193(4):2459-2479. doi: 10.1093/plphys/kiad460.

Abstract

Source and sink interactions play a critical but mechanistically poorly understood role in the regulation of senescence. To disentangle the genetic and molecular mechanisms underlying source-sink-regulated senescence (SSRS), we performed a phenotypic, transcriptomic, and systems genetics analysis of senescence induced by the lack of a strong sink in maize (Zea mays). Comparative analysis of genotypes with contrasting SSRS phenotypes revealed that feedback inhibition of photosynthesis, a surge in reactive oxygen species, and the resulting endoplasmic reticulum (ER) stress were the earliest outcomes of weakened sink demand. Multienvironmental evaluation of a biparental population and a diversity panel identified 12 quantitative trait loci and 24 candidate genes, respectively, underlying SSRS. Combining the natural diversity and coexpression networks analyses identified 7 high-confidence candidate genes involved in proteolysis, photosynthesis, stress response, and protein folding. The role of a cathepsin B like protease 4 (ccp4), a candidate gene supported by systems genetic analysis, was validated by analysis of natural alleles in maize and heterologous analyses in Arabidopsis (Arabidopsis thaliana). Analysis of natural alleles suggested that a 700-bp polymorphic promoter region harboring multiple ABA-responsive elements is responsible for differential transcriptional regulation of ccp4 by ABA and the resulting variation in SSRS phenotype. We propose a model for SSRS wherein feedback inhibition of photosynthesis, ABA signaling, and oxidative stress converge to induce ER stress manifested as programed cell death and senescence. These findings provide a deeper understanding of signals emerging from loss of sink strength and offer opportunities to modify these signals to alter senescence program and enhance crop productivity.

摘要

源库互作对衰老的调控起着至关重要但机制上理解甚少的作用。为了阐明源库调控衰老(SSRS)的遗传和分子机制,我们对玉米(Zea mays)中由于缺乏强库而引起的衰老进行了表型、转录组和系统遗传学分析。对具有不同 SSRS 表型的基因型进行比较分析表明,光合作用的反馈抑制、活性氧的激增以及由此产生的内质网(ER)应激是削弱库需求的最早结果。对双亲群体和多样性面板的多环境评估分别确定了 12 个与 SSRS 相关的数量性状位点和 24 个候选基因。结合自然多样性和共表达网络分析,确定了 7 个高度置信的候选基因,它们参与蛋白水解、光合作用、应激反应和蛋白质折叠。系统遗传分析支持的候选基因半胱氨酸蛋白酶 B 样蛋白酶 4(ccp4)的作用通过对玉米天然等位基因的分析和拟南芥(Arabidopsis thaliana)的异源分析得到了验证。对天然等位基因的分析表明,含有多个 ABA 反应元件的 700bp 多态启动子区域负责 ccp4 的差异转录调控,这是由 ABA 引起的,从而导致 SSRS 表型的差异。我们提出了一个 SSRS 模型,其中光合作用的反馈抑制、ABA 信号和氧化应激汇聚在一起,导致 ER 应激表现为程序性细胞死亡和衰老。这些发现加深了我们对从源库强度丧失中出现的信号的理解,并为改变这些信号以改变衰老程序和提高作物生产力提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验