Suppr超能文献

氮素缺乏影响玉米的生长并调节其碳代谢。

Nitrogen deficiency impacts growth and modulates carbon metabolism in maize.

作者信息

Amoah Joseph N, Keitel Claudia, Kaiser Brent N

机构信息

School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW, 2570, Australia.

出版信息

Planta. 2025 Sep 2;262(4):94. doi: 10.1007/s00425-025-04814-x.

Abstract

Nitrogen (N) deficiency in maize regulates carbon (C) metabolism by enhancing sugar and starch metabolism and related gene expression in both shoots and roots, while increasing root competition for assimilates causing carbohydrate accumulation in leaves and sheaths due reduced translocation to sink tissues. Soluble sugars are vital for plant development, with nitrogen (N) availability playing a key role in their distribution across plant organs, ultimately shaping growth patterns. However, the regulatory mechanisms governing carbon (C) assimilate allocation and utilization under different N forms remain unclear. This study examined C fixation, utilization, and spatial distribution in hydroponically grown maize seedlings subjected to four N treatments: 1 mM NO⁻ (low N, LN), 2 mM NO⁻ (medium N), 10 mM NO⁻ (high N), and 1 mM NH⁺ (low ammonium, LA). LN treatment significantly increased soluble sugar and starch contents while promoting greater root biomass at the expense of shoot biomass, leading to a higher root-to-shoot assimilate allocation. The activities of sugar and starch metabolism enzymes were more tightly regulated in both shoots and roots under LN, indicating enhanced C utilization and increased competition for assimilates, particularly in the root. Key genes involved in above-ground sugar and starch metabolism, ZmSPS1, ZmSuSy1, ZmCINV1, ZmVINV1, ZmCWINV1, ZmSTP2, ZmSUC2, ZmSWEET14, ZmSS1, ZmAMY1, ZmBAM1, and ZmAGPase1, were upregulated under LN, correlating with enhanced enzyme activity and resulting increased sugar and starch accumulation. Starch and sucrose accumulated more in LN-treated leaves than in other N treatments, with starch primarily stored in leaf tips and sucrose concentrated in the leaf sheath. This pattern suggests that excess C accumulation results from inefficient C utilization in sink tissues rather than impaired C assimilation. These findings provide new insights into how LN modulates C partitioning between leaves and roots for stress adaptation, highlighting the importance of improving C utilization in sink tissues to mitigate N deficiency and enhance plant growth.

摘要

玉米中的氮(N)缺乏通过增强地上部和根部的糖和淀粉代谢以及相关基因表达来调节碳(C)代谢,同时增加根系对同化物的竞争,由于向库组织的转运减少,导致碳水化合物在叶片和叶鞘中积累。可溶性糖对植物发育至关重要,氮(N)的有效性在其在植物器官间的分配中起关键作用,最终塑造生长模式。然而,不同氮形态下碳(C)同化物分配和利用的调控机制仍不清楚。本研究检测了水培玉米幼苗在四种氮处理下的碳固定、利用和空间分布:1 mM NO⁻(低氮,LN)、2 mM NO⁻(中氮)、10 mM NO⁻(高氮)和1 mM NH⁺(低铵,LA)。LN处理显著增加了可溶性糖和淀粉含量,同时以地上部生物量为代价促进了更大的根系生物量,导致根对地上部同化物分配更高。在LN处理下,地上部和根部糖和淀粉代谢酶的活性受到更严格的调控,表明碳利用增强,对同化物的竞争增加,尤其是在根部。参与地上部糖和淀粉代谢的关键基因ZmSPS1、ZmSuSy1、ZmCINV1、ZmVINV1、ZmCWINV1、ZmSTP2、ZmSUC2、ZmSWEET14、ZmSS1、ZmAMY1、ZmBAM1和ZmAGPase1在LN处理下上调,与酶活性增强相关,导致糖和淀粉积累增加。与其他氮处理相比,LN处理的叶片中淀粉和蔗糖积累更多,淀粉主要储存在叶尖,蔗糖集中在叶鞘。这种模式表明,过量的碳积累是由于库组织中碳利用效率低下而非碳同化受损所致。这些发现为LN如何调节叶和根之间的碳分配以适应胁迫提供了新的见解,强调了提高库组织中碳利用以减轻氮缺乏和促进植物生长的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced3/12405021/afc574a59002/425_2025_4814_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验