Suppr超能文献

亚秒级超快且可编程的湿化学合成

Sub-second ultrafast yet programmable wet-chemical synthesis.

作者信息

Zhang Lin, Peng Li, Lu Yuanchao, Ming Xin, Sun Yuxin, Xu Xiaoyi, Xia Yuxing, Pang Kai, Fang Wenzhang, Huang Ning, Xu Zhen, Ying Yibin, Liu Yingjun, Fu Yingchun, Gao Chao

机构信息

College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

出版信息

Nat Commun. 2023 Aug 18;14(1):5015. doi: 10.1038/s41467-023-40737-5.

Abstract

Wet-chemical synthesis via heating bulk solution is powerful to obtain nanomaterials. However, it still suffers from limited reaction rate, controllability, and massive consumption of energy/reactants, particularly for the synthesis on specific substrates. Herein, we present an innovative wet-interfacial Joule heating (WIJH) approach to synthesize various nanomaterials in a sub-second ultrafast, programmable, and energy/reactant-saving manner. In the WIJH, Joule heat generated by the graphene film (GF) is confined at the substrate-solution interface. Accompanied by instantaneous evaporation of the solvent, the temperature is steeply improved and the precursors are concentrated, thereby synergistically accelerating and controlling the nucleation and growth of nanomaterials on the substrate. WIJH leads to a record high crystallization rate of HKUST-1 (~1.97 μm s), an ultralow energy cost (9.55 × 10 kWh cm) and low precursor concentrations, which are up to 5 orders of magnitude faster, -6 and -2 orders of magnitude lower than traditional methods, respectively. Moreover, WIJH could handily customize the products' amount, size, and morphology via programming the electrified procedures. The as-prepared HKUST-1/GF enables the Joule-heating-controllable and low-energy-required capture and liberation towards CO. This study opens up a new methodology towards the superefficient synthesis of nanomaterials and solvent-involved Joule heating.

摘要

通过加热本体溶液进行的湿化学合成对于获得纳米材料很有效。然而,它仍然存在反应速率有限、可控性差以及大量消耗能量/反应物的问题,特别是在特定基底上进行合成时。在此,我们提出了一种创新的湿界面焦耳加热(WIJH)方法,以亚秒级超快、可编程且节能/节省反应物的方式合成各种纳米材料。在WIJH中,石墨烯薄膜(GF)产生的焦耳热被限制在基底 - 溶液界面处。伴随着溶剂的瞬间蒸发,温度急剧升高,前驱体浓缩,从而协同加速和控制纳米材料在基底上的成核和生长。WIJH导致HKUST - 1的结晶速率创纪录地高(约1.97μm/s),能量成本超低(9.55×10⁻⁶kWh/cm²)且前驱体浓度低,分别比传统方法快高达5个数量级、能量成本低2个数量级。此外,WIJH可以通过对通电程序进行编程轻松定制产物的数量、尺寸和形态。所制备的HKUST - 1/GF实现了对焦耳加热可控且低能量需求的CO捕获和释放。这项研究为纳米材料的超高效合成以及涉及溶剂的焦耳加热开辟了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验