Suppr超能文献

可编程加热和淬火实现高效热化学合成。

Programmable heating and quenching for efficient thermochemical synthesis.

机构信息

Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.

出版信息

Nature. 2022 May;605(7910):470-476. doi: 10.1038/s41586-022-04568-6. Epub 2022 May 18.

Abstract

Conventional thermochemical syntheses by continuous heating under near-equilibrium conditions face critical challenges in improving the synthesis rate, selectivity, catalyst stability and energy efficiency, owing to the lack of temporal control over the reaction temperature and time, and thus the reaction pathways. As an alternative, we present a non-equilibrium, continuous synthesis technique that uses pulsed heating and quenching (for example, 0.02 s on, 1.08 s off) using a programmable electric current to rapidly switch the reaction between high (for example, up to 2,400 K) and low temperatures. The rapid quenching ensures high selectivity and good catalyst stability, as well as lowers the average temperature to reduce the energy cost. Using CH pyrolysis as a model reaction, our programmable heating and quenching technique leads to high selectivity to value-added C products (>75% versus <35% by the conventional non-catalytic method and versus <60% by most conventional methods using optimized catalysts). Our technique can be extended to a range of thermochemical reactions, such as NH synthesis, for which we achieve a stable and high synthesis rate of about 6,000 μmol g h at ambient pressure for >100 h using a non-optimized catalyst. This study establishes a new model towards highly efficient non-equilibrium thermochemical synthesis.

摘要

传统的热化学合成方法通过连续加热在近平衡条件下进行,由于缺乏对反应温度和时间的时间控制,从而无法控制反应途径,因此在提高合成速率、选择性、催化剂稳定性和能源效率方面面临着严峻的挑战。作为一种替代方法,我们提出了一种非平衡的连续合成技术,使用可编程电流进行脉冲加热和淬火(例如,0.02 s 加热,1.08 s 淬火),以快速在高温(例如,高达 2400 K)和低温之间切换反应。快速淬火确保了高选择性和良好的催化剂稳定性,同时降低了平均温度以降低能源成本。使用 CH 热解作为模型反应,我们的可编程加热和淬火技术导致高附加值 C 产品的高选择性(与传统非催化方法相比>75%,与使用优化催化剂的大多数传统方法相比<60%)。我们的技术可以扩展到一系列热化学反应,例如 NH 合成,我们使用未经优化的催化剂在环境压力下稳定且高的合成速率约为 6000 μmol g h 超过 100 h。这项研究为高效非平衡热化学合成建立了一种新的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验