文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于体外研究的 SARS-CoV-2 变异体对单克隆抗体的逃逸

SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies.

机构信息

Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK.

Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK.

出版信息

Nat Rev Microbiol. 2023 Feb;21(2):112-124. doi: 10.1038/s41579-022-00809-7. Epub 2022 Oct 28.


DOI:10.1038/s41579-022-00809-7
PMID:36307535
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9616429/
Abstract

Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.

摘要

单克隆抗体 (mAbs) 为重症 COVID-19 患者提供了一种治疗选择,对于不能接种疫苗的高危人群尤其重要。鉴于了解 SARS-CoV-2 对 mAbs 产生耐药性的演变至关重要,我们回顾了针对活变体和含有感兴趣的 Spike 突变的病毒构建体的 mAbs 的体外中和数据。不幸的是,新的 SARS-CoV-2 变体报告了逃避 mAb 诱导保护的情况。mAb 变体对之间的中和减少程度差异很大。例如,sotrovimab 对奥密克戎 BA.1 保持其中和能力,但对 BA.2、BA.4 和 BA.5 以及 BA.2.12.1 的疗效降低,目前,只有 bebtelovimab 被报道对这里考虑的所有 SARS-CoV-2 变体都保持疗效。对 mAb 中和的耐药性主要由 Spike 蛋白上的表位单个氨基酸取代的作用引起。尽管并非所有观察到的表位突变都会导致 mAb 逃避增加,但非表位位置的氨基酸取代和突变组合也会导致中和逃避。这篇综述强调了对病毒基因组监测的合理设计的影响,以及开发新型 mAb 治疗方法时需要考虑的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/687f1c52c1b0/41579_2022_809_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/e605422f6057/41579_2022_809_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/30a7b5f25925/41579_2022_809_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/261036ead376/41579_2022_809_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/687f1c52c1b0/41579_2022_809_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/e605422f6057/41579_2022_809_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/30a7b5f25925/41579_2022_809_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/261036ead376/41579_2022_809_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce23/9616429/687f1c52c1b0/41579_2022_809_Fig4_HTML.jpg

相似文献

[1]
SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies.

Nat Rev Microbiol. 2023-2

[2]
Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-analysis.

Microbiol Spectr. 2022-8-31

[3]
Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19)

2025-1

[4]
Structural insights into hybridoma-derived neutralizing monoclonal antibodies against Omicron BA.5 and XBB.1.16 variants of SARS-CoV-2.

J Virol. 2025-2-25

[5]
A Bispecific Antibody Targeting RBD and S2 Potently Neutralizes SARS-CoV-2 Omicron and Other Variants of Concern.

J Virol. 2022-8-24

[6]
Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission.

Rev Med Virol. 2022-9

[7]
Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages.

Cell Host Microbe. 2022-8-10

[8]
BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection.

Nature. 2022-8

[9]
Monoclonal antibodies against S2 subunit of spike protein exhibit broad reactivity toward SARS-CoV-2 variants.

J Biomed Sci. 2022-12-22

[10]
Identification and Analysis of Monoclonal Antibodies with Neutralizing Activity against Diverse SARS-CoV-2 Variants.

J Virol. 2023-6-29

引用本文的文献

[1]
Two cross-neutralizing antibodies isolated from a COVID-19 convalescent via single B cell sorting.

Arch Virol. 2025-8-25

[2]
Long-Circulating Nanobody Confers Durable Prophylaxis against Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Infection.

Adv Nanobiomed Res. 2025-8

[3]
Adenovirus Nanoparticles Displaying RBD Induce a Protective Immune Response Against BA.5 in Mice.

Int J Nanomedicine. 2025-8-6

[4]
An ultra-long heavy chain bovine antibody neutralizes SARS-CoV-2 and reacts broadly with sarbecoviruses.

bioRxiv. 2025-7-17

[5]
Mouse Adapted Omicron BA.5 Induces A Fibrotic Lung Disease Phenotype in BALB/c Mice.

bioRxiv. 2025-7-16

[6]
In silico genomic surveillance by CoVerage predicts and characterizes SARS-CoV-2 variants of interest.

Nat Commun. 2025-7-8

[7]
Quantitative characterisation of extracellular vesicles designed to decoy or compete with SARS-CoV-2 reveals differential mode of action across variants of concern and highlights the diversity of Omicron.

Cell Commun Signal. 2025-7-2

[8]
Targeting G9a-mA translational mechanism of SARS-CoV-2 pathogenesis for multifaceted therapeutics of COVID-19 and its sequalae.

iScience. 2025-5-11

[9]
Viral evolution prediction identifies broadly neutralizing antibodies to existing and prospective SARS-CoV-2 variants.

Nat Microbiol. 2025-6-10

[10]
Strategies and efforts in circumventing the emergence of antiviral resistance against conventional antivirals.

NPJ Antimicrob Resist. 2025-6-9

本文引用的文献

[1]
Structural changes in the SARS-CoV-2 spike E406W mutant escaping a clinical monoclonal antibody cocktail.

Cell Rep. 2023-6-27

[2]
SARS-CoV-2 variants impact RBD conformational dynamics and ACE2 accessibility.

Front Med Technol. 2022-10-5

[3]
Imprinted antibody responses against SARS-CoV-2 Omicron sublineages.

Science. 2022-11-11

[4]
WHO's Therapeutics and COVID-19 Living Guideline on mAbs needs to be reassessed.

Lancet. 2022-12-17

[5]
Evasion of neutralising antibodies by omicron sublineage BA.2.75.

Lancet Infect Dis. 2022-10

[6]
COVID-19 morbidity decreases with tixagevimab-cilgavimab preexposure prophylaxis in kidney transplant recipient nonresponders or low-vaccine responders.

Kidney Int. 2022-10

[7]
Outcomes of bebtelovimab and sotrovimab treatment of solid organ transplant recipients with mild-to-moderate coronavirus disease 2019 during the Omicron epoch.

Transpl Infect Dis. 2022-8

[8]
Point mutations in SARS-CoV-2 variants induce long-range dynamical perturbations in neutralizing antibodies.

Chem Sci. 2022-5-23

[9]
Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains.

Nat Commun. 2022-7-2

[10]
Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum.

Cell. 2022-7-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索