Pervez Md Nahid, Jahid Md Anwar, Mishu Mst Monira Rahman, Talukder Md Eman, Buonerba Antonio, Jiang Tao, Liang Yanna, Tang Shuai, Zhao Yaping, Dotto Guilherme L, Cai Yingjie, Naddeo Vincenzo
Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430200, China.
Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy.
Sci Rep. 2023 Aug 18;13(1):13460. doi: 10.1038/s41598-023-40701-9.
There has been a lot of attention on water pollution by dyes in recent years because of their serious toxicological implications on human health and the environment. Therefore, the current study presented a novel polyethylene glycol-functionalized graphene oxide/chitosan composite (PEG-GO/CS) to remove dyes from aqueous solutions. Several characterization techniques, such as SEM, TEM, FTIR, TGA/DTG, XRD, and XPS, were employed to correlate the structure-property relationship between the adsorption performance and PEG-GO/CS composites. Taguchi's (L) approach was used to optimize the batch adsorption process variables [pH, contact time, adsorbent dose, and initial concentration of methyl orange (MO)] for maximal adsorption capacity. pH = 2, contact time = 90 min, adsorbent dose = 10 mg/10 mL, and MO initial concentration = 200 mg/L were found to be optimal. The material has a maximum adsorption capacity of 271 mg/g for MO at room temperature. With the greatest R = 0.8930 values, the Langmuir isotherm model was shown to be the most appropriate. Compared to the pseudo-first-order model (R = 0.9685), the pseudo-second-order model (R = 0.9707) better fits the kinetic data. Electrostatic interactions were the dominant mechanism underlying MO sorption onto the PEG/GO-CS composite. The as-synthesized composite was reusable for up to three adsorption cycles. Thus, the PEG/GO-CS composite fabricated through a simple procedure may remove MO and other similar organic dyes in real contaminated water.
近年来,由于染料对人类健康和环境具有严重的毒理学影响,其对水污染问题备受关注。因此,本研究提出了一种新型的聚乙二醇功能化氧化石墨烯/壳聚糖复合材料(PEG-GO/CS),用于从水溶液中去除染料。采用了多种表征技术,如扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、热重分析/微商热重分析(TGA/DTG)、X射线衍射(XRD)和X射线光电子能谱(XPS),以关联吸附性能与PEG-GO/CS复合材料之间的结构-性能关系。采用田口(L)方法优化间歇吸附过程变量[pH值、接触时间、吸附剂剂量和甲基橙(MO)初始浓度],以实现最大吸附容量。结果发现,pH值=2、接触时间=90分钟、吸附剂剂量=10毫克/10毫升和MO初始浓度=200毫克/升为最佳条件。该材料在室温下对MO的最大吸附容量为271毫克/克。朗缪尔等温线模型显示最为合适,其R值最大,为0.8930。与伪一级模型(R=0.9685)相比,伪二级模型(R=0.9707)能更好地拟合动力学数据。静电相互作用是MO吸附到PEG/GO-CS复合材料上的主要机制。合成的复合材料可重复使用多达三个吸附循环。因此,通过简单工艺制备得到的PEG/GO-CS复合材料可去除实际受污染水中的MO及其他类似有机染料。