Suppr超能文献

用于监测居民用水量的统计参数控制图和非参数控制图。

Statistical parametric and non-parametric control charts for monitoring residential water consumption.

作者信息

Bogo Allyson Belli, Henning Elisa, Kalbusch Andreza

机构信息

College of Technological Science, Santa Catarina State University, Joinville, Brazil.

出版信息

Sci Rep. 2023 Aug 19;13(1):13543. doi: 10.1038/s41598-023-40584-w.

Abstract

The adoption of strategies for monitoring water consumption is essential for water resources management, contributing to the promotion of the sustainability in the water sector. Statistical process control (SPC) charts, which are widely used in the industrial sector, are statistical methods developed to improve the quality of products and processes. The application of this method has reached other areas over the last decades and has recently been identified as an option for environmental monitoring. In this context, the application of SPC charts emerges as an option for water consumption monitoring, whether in a building or an urban scale. Thus, this article aims to analyze the application of statistical process control charts in the monitoring of water consumption of two housing compounds in Joinville, southern Brazil. The methodological procedures include the use of the Shewhart and the EWMA control charts in addition to the non-parametric alternative, the EWMA-SN, assessing the effectiveness of these techniques in detecting water leaks in residential apartment buildings. The data sets, obtained through a telemetry metering system from the water utility, represent a period of 243 days. The results show that control charts are a powerful tool in identifying changes in water consumption patterns, with the EWMA chart flagging the leaks sooner.

摘要

采用用水监测策略对于水资源管理至关重要,有助于推动水行业的可持续发展。统计过程控制(SPC)图在工业领域广泛应用,是为提高产品和过程质量而开发的统计方法。在过去几十年中,该方法的应用已扩展到其他领域,最近被视为环境监测的一种选择。在此背景下,SPC图的应用成为建筑或城市层面用水监测的一种选择。因此,本文旨在分析统计过程控制图在巴西南部约维莱的两个住宅小区用水监测中的应用。方法步骤包括使用休哈特控制图和指数加权移动平均(EWMA)控制图,以及非参数替代方法EWMA-SN,评估这些技术在检测住宅公寓楼漏水方面的有效性。通过自来水公司的遥测计量系统获得的数据集代表了243天的时间段。结果表明,控制图是识别用水模式变化的有力工具,EWMA图能更快地标记出漏水情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a1c/10439885/77388ea912d2/41598_2023_40584_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验