Suppr超能文献

采用响应面法和人工神经网络对出芽短梗霉 AKW 产黑色素的优化进行比较研究。

A comparative study using response surface methodology and artificial neural network towards optimized production of melanin by Aureobasidium pullulans AKW.

机构信息

Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.

Botany and Microbiology Department, Faculty of Science, King Saud University, 11451, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2023 Aug 19;13(1):13545. doi: 10.1038/s41598-023-40549-z.

Abstract

The effect of three independent variables (i.e., tyrosine, sucrose, and incubation time) on melanin production by Aureobasidium pullulans AKW was unraveled by two distinctive approaches: response surface methodology (i.e. Box Behnken design (BBD)) and artificial neural network (ANN) in this study for the first time ever using a simple medium. Regarding BBD, sucrose and incubation intervals did impose a significant influence on the output (melanin levels), however, tyrosine did not. The validation process exhibited a high consistency of BBD and ANN paradigms with the experimental melanin production. Concerning ANN, the predicted values of melanin were highly comparable to the experimental values, with minor errors competing with BBD. Highly comparable experimental values of melanin were achieved upon using BBD (9.295 ± 0.556 g/L) and ANN (10.192 ± 0.782 g/L). ANN accurately predicted melanin production and showed more improvement in melanin production by about 9.7% higher than BBD. The purified melanin structure was verified by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction pattern (XRD), and thermogravimetric analysis (TGA). The results verified the hierarchical architecture of the particles as small compasses by SEM analysis, inter-layer spacing in the XRD analysis, maximal atomic % for carbon, and oxygen atoms in the EDX analysis, and the great thermal stability in the TGA analysis of the purified melanin. Interestingly, the current novel endophytic strain was tyrosine-independent, and the uniquely applied ANN paradigm was more efficient in modeling the melanin production with appreciate amount on a simple medium in a relatively short time (168 h), suggesting additional optimization studies for further maximization of melanin production.

摘要

本研究首次在简单培养基中使用两种独特方法(即响应面法(即 Box-Behnken 设计(BBD))和人工神经网络(ANN))来研究三种独立变量(即酪氨酸、蔗糖和培养时间)对出芽短梗霉 AKW 黑色素生成的影响。关于 BBD,蔗糖和培养时间对输出(黑色素水平)有显著影响,但酪氨酸没有。验证过程表明 BBD 和 ANN 模型与实验黑色素生产具有高度一致性。关于 ANN,黑色素的预测值与实验值高度可比,误差较小,与 BBD 竞争。使用 BBD(9.295±0.556 g/L)和 ANN(10.192±0.782 g/L)可获得高度可比的黑色素实验值。ANN 准确预测了黑色素的产生,并且在黑色素产量上的提高幅度比 BBD 高出约 9.7%。通过扫描电子显微镜(SEM)、能量色散 X 射线光谱(EDX)、X 射线衍射图案(XRD)和热重分析(TGA)验证了纯化黑色素的结构。结果通过 SEM 分析验证了颗粒的层次结构,类似于小指南针,XRD 分析中的层间间距,EDX 分析中的最大碳原子和氧原子百分比,以及 TGA 分析中的纯化黑色素的高热稳定性。有趣的是,当前的新型内生菌株是酪氨酸非依赖性的,独特应用的 ANN 范例在相对较短的时间(168 小时)内在简单培养基中对黑色素生产进行建模更为有效,表明需要进行额外的优化研究,以进一步最大程度地提高黑色素产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a4d/10439932/3e32c3b49381/41598_2023_40549_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验