Suppr超能文献

通过过度拟合稀疏标注数据进行医学体积分割。

Medical volume segmentation by overfitting sparsely annotated data.

作者信息

Payer Tristan, Nizamani Faraz, Beer Meinrad, Götz Michael, Ropinski Timo

机构信息

Ulm University, Institute of Media Informatics, Visual Computing Group, Ulm, Germany.

University Hospital Ulm, Radiology Department, Ulm, Germany.

出版信息

J Med Imaging (Bellingham). 2023 Jul;10(4):044007. doi: 10.1117/1.JMI.10.4.044007. Epub 2023 Aug 17.

Abstract

PURPOSE

Semantic segmentation is one of the most significant tasks in medical image computing, whereby deep neural networks have shown great success. Unfortunately, supervised approaches are very data-intensive, and obtaining reliable annotations is time-consuming and expensive. Sparsely labeled approaches, such as bounding boxes, have shown some success in reducing the annotation time. However, in 3D volume data, each slice must still be manually labeled.

APPROACH

We evaluate approaches that reduce the annotation effort by reducing the number of slices that need to be labeled in a 3D volume. In a two-step process, a similarity metric is used to select slices that should be annotated by a trained radiologist. In the second step, a predictor is used to predict the segmentation mask for the rest of the slices. We evaluate different combinations of selectors and predictors on medical CT and MRI volumes. Thus we can determine that combination works best, and how far slice annotations can be reduced.

RESULTS

Our results show that for instance for the Medical Segmentation Decathlon-heart dataset, some selector, and predictor combinations allow for a Dice score 0.969 when only annotating 20% of slices per volume. Experiments on other datasets show a similarly positive trend.

CONCLUSIONS

We evaluate a method that supports experts during the labeling of 3D medical volumes. Our approach makes it possible to drastically reduce the number of slices that need to be manually labeled. We present a recommendation in which selector predictor combination to use for different tasks and goals.

摘要

目的

语义分割是医学图像计算中最重要的任务之一,深度神经网络在这方面已取得巨大成功。不幸的是,监督方法对数据要求很高,获取可靠的标注既耗时又昂贵。稀疏标注方法,如边界框,在减少标注时间方面已取得一些成效。然而,在三维体数据中,每一层切片仍需手动标注。

方法

我们评估了通过减少三维体中需要标注的切片数量来降低标注工作量的方法。在一个两步过程中,使用相似性度量来选择应由训练有素的放射科医生标注的切片。在第二步中,使用预测器为其余切片预测分割掩码。我们在医学CT和MRI体数据上评估了选择器和预测器的不同组合。由此我们可以确定哪种组合效果最佳,以及切片标注可以减少到何种程度。

结果

我们的结果表明,例如对于医学分割十项全能心脏数据集,某些选择器和预测器组合在每个体积仅标注20%的切片时,Dice分数可达0.969。在其他数据集上的实验也显示出类似的积极趋势。

结论

我们评估了一种在三维医学体数据标注过程中为专家提供支持的方法。我们的方法能够大幅减少需要手动标注的切片数量。我们针对不同任务和目标给出了使用哪种选择器-预测器组合的建议。

相似文献

1
Medical volume segmentation by overfitting sparsely annotated data.
J Med Imaging (Bellingham). 2023 Jul;10(4):044007. doi: 10.1117/1.JMI.10.4.044007. Epub 2023 Aug 17.
2
Light mixed-supervised segmentation for 3D medical image data.
Med Phys. 2024 Jan;51(1):167-178. doi: 10.1002/mp.16816. Epub 2023 Nov 1.
3
Collaborative Learning for Annotation-Efficient Volumetric MR Image Segmentation.
J Magn Reson Imaging. 2024 Oct;60(4):1604-1614. doi: 10.1002/jmri.29194. Epub 2023 Dec 29.
4
3D-BoxSup: Positive-Unlabeled Learning of Brain Tumor Segmentation Networks From 3D Bounding Boxes.
Front Neurosci. 2020 Apr 28;14:350. doi: 10.3389/fnins.2020.00350. eCollection 2020.
5
URCA: Uncertainty-based region clipping algorithm for semi-supervised medical image segmentation.
Comput Methods Programs Biomed. 2024 Sep;254:108278. doi: 10.1016/j.cmpb.2024.108278. Epub 2024 Jun 11.
6
An Annotation Sparsification Strategy for 3D Medical Image Segmentation via Representative Selection and Self-Training.
Proc AAAI Conf Artif Intell. 2020 Feb;34(44):6925-6932. doi: 10.1609/aaai.v34i04.6175. Epub 2020 Apr 3.
7
PLN: Parasitic-Like Network for Barely Supervised Medical Image Segmentation.
IEEE Trans Med Imaging. 2023 Mar;42(3):582-593. doi: 10.1109/TMI.2022.3211188. Epub 2023 Mar 2.
8
Hepatic and portal vein segmentation with dual-stream deep neural network.
Med Phys. 2024 Aug;51(8):5441-5456. doi: 10.1002/mp.17090. Epub 2024 Apr 22.
9
Self-supervised-RCNN for medical image segmentation with limited data annotation.
Comput Med Imaging Graph. 2023 Oct;109:102297. doi: 10.1016/j.compmedimag.2023.102297. Epub 2023 Sep 9.

本文引用的文献

1
The Medical Segmentation Decathlon.
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.
2
Annotation-efficient deep learning for automatic medical image segmentation.
Nat Commun. 2021 Oct 8;12(1):5915. doi: 10.1038/s41467-021-26216-9.
3
AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem?
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6695-6714. doi: 10.1109/TPAMI.2021.3100536. Epub 2022 Sep 14.
4
Label cleaning and propagation for improved segmentation performance using fully convolutional networks.
Int J Comput Assist Radiol Surg. 2021 Mar;16(3):349-361. doi: 10.1007/s11548-021-02312-5. Epub 2021 Mar 3.
6
An Annotation Sparsification Strategy for 3D Medical Image Segmentation via Representative Selection and Self-Training.
Proc AAAI Conf Artif Intell. 2020 Feb;34(44):6925-6932. doi: 10.1609/aaai.v34i04.6175. Epub 2020 Apr 3.
7
Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation.
Med Image Anal. 2020 Jul;63:101693. doi: 10.1016/j.media.2020.101693. Epub 2020 Apr 3.
8
Reconciling modern machine-learning practice and the classical bias-variance trade-off.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15849-15854. doi: 10.1073/pnas.1903070116. Epub 2019 Jul 24.
9
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
10
Reverse Classification Accuracy: Predicting Segmentation Performance in the Absence of Ground Truth.
IEEE Trans Med Imaging. 2017 Aug;36(8):1597-1606. doi: 10.1109/TMI.2017.2665165. Epub 2017 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验