Suppr超能文献

在英国生物银行和白厅队列中开发和验证痴呆风险评分。

Development and validation of a dementia risk score in the UK Biobank and Whitehall II cohorts.

机构信息

Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.

Department of Psychiatry, University of Oxford, Oxford, UK.

出版信息

BMJ Ment Health. 2023 Jul;26(1). doi: 10.1136/bmjment-2023-300719.

Abstract

BACKGROUND

Current dementia risk scores have had limited success in consistently identifying at-risk individuals across different ages and geographical locations.

OBJECTIVE

We aimed to develop and validate a novel dementia risk score for a midlife UK population, using two cohorts: the UK Biobank, and UK Whitehall II study.

METHODS

We divided the UK Biobank cohort into a training (n=176 611, 80%) and test sample (n=44 151, 20%) and used the Whitehall II cohort (n=2934) for external validation. We used the Cox LASSO regression to select the strongest predictors of incident dementia from 28 candidate predictors and then developed the risk score using competing risk regression.

FINDINGS

Our risk score, termed the UK Biobank Dementia Risk Score (UKBDRS), consisted of age, education, parental history of dementia, material deprivation, a history of diabetes, stroke, depression, hypertension, high cholesterol, household occupancy, and sex. The score had a strong discrimination accuracy in the UK Biobank test sample (area under the curve (AUC) 0.8, 95% CI 0.78 to 0.82) and in the Whitehall cohort (AUC 0.77, 95% CI 0.72 to 0.81). The UKBDRS also significantly outperformed three other widely used dementia risk scores originally developed in cohorts in Australia (the Australian National University Alzheimer's Disease Risk Index), Finland (the Cardiovascular Risk Factors, Ageing, and Dementia score), and the UK (Dementia Risk Score).

CLINICAL IMPLICATIONS

Our risk score represents an easy-to-use tool to identify individuals at risk for dementia in the UK. Further research is required to determine the validity of this score in other populations.

摘要

背景

目前的痴呆风险评分在不同年龄和地理位置的风险人群识别方面效果有限。

目的

我们旨在使用两个队列(英国生物银行和英国白厅 II 研究)为英国中年人群开发和验证一种新的痴呆风险评分。

方法

我们将英国生物银行队列分为训练队列(n=176611,80%)和测试队列(n=44151,20%),并使用白厅 II 队列(n=2934)进行外部验证。我们使用 Cox LASSO 回归从 28 个候选预测因子中选择最强的痴呆事件预测因子,然后使用竞争风险回归开发风险评分。

结果

我们的风险评分称为英国生物银行痴呆风险评分(UKBDRS),由年龄、教育程度、父母痴呆病史、物质剥夺、糖尿病史、中风、抑郁症、高血压、高胆固醇、家庭居住情况和性别组成。该评分在英国生物银行测试队列中具有很强的区分准确性(曲线下面积(AUC)为 0.8,95%CI 为 0.78 至 0.82),在白厅队列中也具有很高的准确性(AUC 为 0.77,95%CI 为 0.72 至 0.81)。UKBDRS 也明显优于其他三个最初在澳大利亚(澳大利亚国立大学阿尔茨海默病风险指数)、芬兰(心血管风险因素、衰老和痴呆评分)和英国(痴呆风险评分)队列中开发的广泛使用的痴呆风险评分。

临床意义

我们的风险评分代表了一种在英国识别痴呆风险个体的简单易用工具。需要进一步研究来确定该评分在其他人群中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fbe/10577770/da5abf1c9d1e/bmjment-2023-300719f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验