Sakano Michael N, Hamed Ahmed, Kober Edward M, Grilli Nicolo, Hamilton Brenden W, Islam Md Mahbubul, Koslowski Marisol, Strachan Alejandro
School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
J Phys Chem A. 2020 Nov 5;124(44):9141-9155. doi: 10.1021/acs.jpca.0c07320. Epub 2020 Oct 28.
The response of high-energy-density materials to thermal or mechanical insults involves coupled thermal, mechanical, and chemical processes with disparate temporal and spatial scales that no single model can capture. Therefore, we developed a multiscale model for 1,3,5-trinitro-1,3,5-triazinane, RDX, where a continuum description is informed by reactive and nonreactive molecular dynamics (MD) simulations to describe chemical reactions and thermal transport. Reactive MD simulations under homogeneous isothermal and adiabatic conditions are used to develop a reduced-order chemical kinetics model. Coarse graining is done using unsupervised learning via non-negative matrix factorization. Importantly, the components resulting from the analysis can be interpreted as reactants, intermediates, and products, which allows us to write kinetics equations for their evolution. The kinetics parameters are obtained from isothermal MD simulations over a wide temperature range, 1200-3000 K, and the heat evolved is calibrated from adiabatic simulations. We validate the continuum model against MD simulations by comparing the evolution of a cylindrical hotspot 10 nm in diameter. We find excellent agreement in the time evolution of the hotspot temperature fields both in cases where quenching is observed and at higher temperatures for which the hotspot transitions into a deflagration wave. The validated continuum model is then used to assess the criticality of hotspots involving scales beyond the reach of atomistic simulations that are relevant to detonation initiation.
高能量密度材料对热或机械冲击的响应涉及热、机械和化学过程的耦合,这些过程具有不同的时间和空间尺度,没有单一模型能够涵盖。因此,我们为1,3,5-三硝基-1,3,5-三嗪烷(RDX)开发了一个多尺度模型,其中连续介质描述由反应性和非反应性分子动力学(MD)模拟提供信息,以描述化学反应和热传输。在均匀等温及绝热条件下的反应性MD模拟用于开发降阶化学动力学模型。通过非负矩阵分解利用无监督学习进行粗粒化。重要的是,分析得到的组分可解释为反应物、中间体和产物,这使我们能够写出它们演化的动力学方程。动力学参数是通过在1200 - 3000 K的宽温度范围内的等温MD模拟获得的,并且从绝热模拟中校准释放的热量。我们通过比较直径为10 nm的圆柱形热点的演化,将连续介质模型与MD模拟进行了验证。我们发现在观察到淬灭的情况下以及在热点转变为爆燃波的较高温度下,热点温度场的时间演化都有很好的一致性。然后,经过验证的连续介质模型用于评估与爆轰起爆相关的、涉及原子模拟无法触及尺度的热点的临界性。