Suppr超能文献

基于代谢网络的非小细胞肺癌血浆标志物鉴定。

Metabolic network-based identification of plasma markers for non-small cell lung cancer.

机构信息

Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, Jaingsu, China.

Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital of Jiangsu Province, Nanjing, 210009, Jiangsu, China.

出版信息

Anal Bioanal Chem. 2021 Dec;413(30):7421-7430. doi: 10.1007/s00216-021-03699-5. Epub 2021 Oct 7.

Abstract

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.

摘要

代谢标志物能提供生物功能障碍的敏感信息,在癌症的诊断和治疗中发挥着重要作用。然而,有效的标志物的发现受到缺乏完善的代谢物选择方法的限制。在这里,我们提出了一种基于网络的策略,以发现具有非小细胞肺癌(NSCLC)潜在临床可用性的代谢标志物。首先,我们使用基于质谱的非靶向代谢组学方法对 43 名 NSCLC 患者和 43 名健康对照者的血浆样本进行了分析。我们发现了一系列 39 种代谢物发生了显著改变。基于京都基因与基因组百科全书(KEGG)数据库构建的人类代谢网络,我们将这些差异代谢物映射到网络中,并构建了一个包含 23 种潜在代谢标志物的 NSCLC 相关疾病模块。通过测量该模块中分子的 PageRank 中心性,我们计算评估了 23 种代谢物的网络重要性,并证明芳香族氨基酸和长链脂肪酸的代谢途径为 NSCLC 提供了潜在的分子靶点(即 IL4l1 和 ACOT2)。通过结合基于网络的排名和支持向量机建模,我们进一步发现了一组 8 种代谢物(即丙酮酸、色氨酸和棕榈酸),它们具有较高的区分患者和对照者的能力(准确率>97.7%)。总之,我们提出了一种有意义的代谢标志物发现的网络方法,并鉴定出了 8 种用于 NSCLC 诊断的强候选代谢物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验