Suppr超能文献

并行多链路组联合独立成分分析:跨多个静息态功能磁共振成像网络融合3D结构和4D功能数据

Parallel Multilink Group Joint ICA: Fusion of 3D Structural and 4D Functional Data Across Multiple Resting fMRI Networks.

作者信息

Khalilullah K M Ibrahim, Agcaoglu Oktay, Sui Jing, Duda Marlena, Adali Tülay, Calhoun Vince D

机构信息

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA.

Department of Electrical and Computer Engineering, University of Maryland, Baltimore, Maryland, USA.

出版信息

bioRxiv. 2024 Jun 11:2024.03.21.586091. doi: 10.1101/2024.03.21.586091.

Abstract

Multimodal neuroimaging research plays a pivotal role in understanding the complexities of the human brain and its disorders. Independent component analysis (ICA) has emerged as a widely used and powerful tool for disentangling mixed independent sources, particularly in the analysis of functional magnetic resonance imaging (fMRI) data. This paper extends the use of ICA as a unifying framework for multimodal fusion, introducing a novel approach termed parallel multilink group joint ICA (pmg-jICA). The method allows for the fusion of gray matter maps from structural MRI (sMRI) data to multiple fMRI intrinsic networks, addressing the limitations of previous models. The effectiveness of pmg-jICA is demonstrated through its application to an Alzheimer's dataset, yielding linked structure-function outputs for 53 brain networks. Our approach leverages the complementary information from various imaging modalities, providing a unique perspective on brain alterations in Alzheimer's disease. The pmg-jICA identifies several components with significant differences between HC and AD groups including thalamus, caudate, putamen with in the subcortical (SC) domain, insula, parahippocampal gyrus within the cognitive control (CC) domain, and the lingual gyrus within the visual (VS) domain, providing localized insights into the links between AD and specific brain regions. In addition, because we link across multiple brain networks, we can also compute functional network connectivity (FNC) from spatial maps and subject loadings, providing a detailed exploration of the relationships between different brain regions and allowing us to visualize spatial patterns and loading parameters in sMRI along with intrinsic networks and FNC from the fMRI data. In essence, developed approach combines concepts from joint ICA and group ICA to provide a rich set of output characterizing data-driven links between covarying gray matter networks, and a (potentially large number of) resting fMRI networks allowing further study in the context of structure/function links. We demonstrate the utility of the approach by highlighting key structure/function disruptions in Alzheimer's individuals.

摘要

多模态神经影像学研究在理解人类大脑的复杂性及其疾病方面发挥着关键作用。独立成分分析(ICA)已成为一种广泛使用且强大的工具,用于分离混合的独立源,特别是在功能磁共振成像(fMRI)数据的分析中。本文将ICA的应用扩展为多模态融合的统一框架,引入了一种称为并行多链路组联合ICA(pmg-jICA)的新方法。该方法允许将来自结构MRI(sMRI)数据的灰质图与多个fMRI固有网络进行融合,解决了先前模型的局限性。通过将pmg-jICA应用于阿尔茨海默病数据集,证明了其有效性,该数据集产生了53个脑网络的结构-功能关联输出。我们的方法利用了来自各种成像模态的互补信息,为阿尔茨海默病中的大脑改变提供了独特的视角。pmg-jICA识别出几个在健康对照组(HC)和阿尔茨海默病组(AD)之间存在显著差异的成分,包括丘脑、尾状核、壳核(位于皮质下(SC)区域)、脑岛、认知控制(CC)区域内的海马旁回以及视觉(VS)区域内的舌回,为AD与特定脑区之间的联系提供了局部见解。此外,由于我们跨多个脑网络进行关联,我们还可以从空间图和受试者负荷中计算功能网络连接性(FNC),详细探索不同脑区之间的关系,并使我们能够可视化sMRI中的空间模式和负荷参数以及fMRI数据中的固有网络和FNC。从本质上讲,所开发的方法结合了联合ICA和组ICA的概念,提供了一组丰富的输出,表征了协变灰质网络之间的数据驱动联系,以及(可能大量的)静息态fMRI网络,从而允许在结构/功能联系的背景下进行进一步研究。我们通过突出阿尔茨海默病个体中的关键结构/功能破坏来证明该方法的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e9/11181402/3512b6b61ecd/nihpp-2024.03.21.586091v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验