Department of Surgery, Melbourne Medical School, University of Melbourne, Melbourne, Australia.
Brian F. Buxton Department of Cardiac Surgery, Austin Hospital, Melbourne, Australia.
Heart Vessels. 2023 Dec;38(12):1476-1485. doi: 10.1007/s00380-023-02292-3. Epub 2023 Aug 22.
To demonstrate that point-of-care multimodal spectroscopy using Near-Infrared (NIR) and Raman Spectroscopy (RS) can be used to diagnose human heart tissue. We generated 105 spectroscopic scans, which comprised 4 NIR and 3 RS scans per sample to generate a "multimodal spectroscopic scan" (MSS) for each heart, done across 15 patients, 5 each from the dilated cardiomyopathy (DCM), Ischaemic Heart Disease (IHD) and Normal pathologies. Each of the MSS scans was undertaken in 3 s. Data were entered into machine learning (ML) algorithms to assess accuracy of MSS in diagnosing tissue type. The median age was 50 years (IQR 49-52) for IHD, 47 (IQR 45-50) for DCM and 36 (IQR 33-52) for healthy patients (p = 0.35), 60% of which were male. MSS identified key differences in IHD, DCM and normal heart samples in regions typically associated with fibrosis and collagen (NIR wavenumbers: 1433, 1509, 1581, 1689 and 1725 nm; RS wavelengths: 1658, 1450 and 1330 cm). In principal component (PC) analyses, these differences explained 99.2% of the variation in 4 PCs for NIR, 81.6% in 10 PCs for Raman, and 99.0% in 26 PCs for multimodal spectroscopic signatures. Using a stack machine learning algorithm with combined NIR and Raman data, our model had a precision of 96.9%, recall of 96.6%, specificity of 98.2% and Area Under Curve (AUC) of 0.989 (Table 1). NIR and Raman modalities alone had similar levels of precision at 94.4% and 89.8% respectively (Table 1). MSS combined with ML showed accuracy of 90% for detecting dilated cardiomyopathy, 100% for ischaemic heart disease and 100% for diagnosing healthy tissue. Multimodal spectroscopic signatures, based on NIR and Raman spectroscopy, could provide cardiac tissue scans in 3-s to aid accurate diagnoses of fibrosis in IHD, DCM and normal hearts. Table 1 Machine learning performance metrics for validation data sets of (a) Near-Infrared (NIR), (b) Raman and (c and d) multimodal data using logistic regression (LR), stochastic gradient descent (SGD) and support vector machines (SVM), with combined "stack" (LR + SGD + SVM) AUC Precision Recall Specificity (a) NIR model Logistic regression 0.980 0.944 0.933 0.967 SGD 0.550 0.281 0.400 0.700 SVM 0.840 0.806 0.800 0.900 Stack 0.933 0.794 0.800 0.900 (b) Raman model Logistic regression 0.985 0.940 0.929 0.960 SGD 0.892 0.869 0.857 0.932 SVM 0.992 0.940 0.929 0.960 Stack 0.954 0.869 0.857 0.932 (c) MSS: multimodal (NIR + Raman) to detect DCM vs. IHD vs. normal patients Logistic regression 0.975 0.841 0.828 0.917 SGD 0.847 0.803 0.793 0.899 SVM 0.971 0.853 0.828 0.917 Stack 0.961 0.853 0.828 0.917 (d) MSS: multimodal (NIR + Raman) to detect pathological vs. normal patients Logistic regression 0.961 0.969 0.966 0.984 SGD 0.944 0.967 0.966 0.923 SVM 1.000 1.000 1.000 1.000 Stack 1.000 0.944 0.931 0.969 Bold values indicate values obtained from the stack algorithm and used for analyses.
为了证明可以使用近红外 (NIR) 和拉曼光谱 (RS) 的即时多模态光谱学来诊断人体心脏组织。我们生成了 105 个光谱扫描,每个样本包含 4 个 NIR 和 3 个 RS 扫描,以生成每个心脏的“多模态光谱扫描”(MSS),共在 15 名患者中进行,5 名患者分别患有扩张型心肌病 (DCM)、缺血性心脏病 (IHD) 和正常病变。每个 MSS 扫描用时 3 秒。将数据输入机器学习 (ML) 算法中,以评估 MSS 在诊断组织类型方面的准确性。中位年龄为 IHD 患者 50 岁(IQR 49-52),DCM 患者 47 岁(IQR 45-50),健康患者 36 岁(IQR 33-52)(p=0.35),其中 60%为男性。MSS 在通常与纤维化和胶原相关的区域中,识别出 IHD、DCM 和正常心脏样本的关键差异(NIR 波数:1433、1509、1581、1689 和 1725nm;RS 波长:1658、1450 和 1330cm)。在主成分 (PC) 分析中,这些差异用 4 个 NIR 中的 99.2%、10 个 RS 中的 81.6%和 26 个多模态光谱特征中的 99.0%来解释。使用结合 NIR 和拉曼数据的堆叠机器学习算法,我们的模型在精度、召回率、特异性和 AUC 方面的表现分别为 96.9%、96.6%、98.2%和 0.989(表 1)。NIR 和拉曼模态的精度分别为 94.4%和 89.8%,具有相似的水平(表 1)。结合 ML 的 MSS 显示出检测扩张型心肌病的准确率为 90%,检测缺血性心脏病的准确率为 100%,检测健康组织的准确率为 100%。基于近红外和拉曼光谱的多模态光谱特征可以在 3 秒内提供心脏组织扫描,以帮助准确诊断 IHD、DCM 和正常心脏中的纤维化。 表 1 验证数据集的机器学习性能指标 (a) 近红外 (NIR)、(b) 拉曼和 (c 和 d) 多模态数据的逻辑回归 (LR)、随机梯度下降 (SGD) 和支持向量机 (SVM),以及结合“堆叠”(LR+SGD+SVM) 的 AUC 精度 召回率 特异性 (a) NIR 模型 逻辑回归 0.980 0.944 0.933 0.967 随机梯度下降 0.550 0.281 0.400 0.700 支持向量机 0.840 0.806 0.800 0.900 堆叠 0.933 0.794 0.800 0.900 (b) 拉曼模型 逻辑回归 0.985 0.940 0.929 0.960 随机梯度下降 0.892 0.869 0.857 0.932 支持向量机 0.992 0.940 0.929 0.960 堆叠 0.954 0.869 0.857 0.932 (c) MSS:多模态 (NIR+Raman) 检测 DCM 与 IHD 与正常患者 逻辑回归 0.975 0.841 0.828 0.917 随机梯度下降 0.847 0.803 0.793 0.899 支持向量机 0.971 0.853 0.828 0.917 堆叠 0.961 0.853 0.828 0.917 (d) MSS:多模态 (NIR+Raman) 检测病理与正常患者 逻辑回归 0.961 0.969 0.966 0.984 随机梯度下降 0.944 0.967 0.966 0.923 支持向量机 1.000 1.000 1.000 1.000 堆叠 1.000 0.944 0.931 0.969 粗体值表示来自堆叠算法的值,并用于分析。