Suppr超能文献

晚期糖基化终产物:交联特性如何影响胶原纤维的行为。

Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior.

作者信息

Kamml Julia, Acevedo Claire, Kammer David S

机构信息

Institute for Building Materials, ETH Zurich, Switzerland.

Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA.

出版信息

ArXiv. 2023 Aug 10:arXiv:2308.05514v1.

Abstract

Advanced-Glycation-Endproducts (AGEs) are known to be a major cause of impaired tissue material properties. In collagen fibrils, which constitute a major building component of human tissue, these AGEs appear as fibrillar cross-links. It has been shown that when AGEs accumulate in collagen fibrils, a process often caused by diabetes and aging, the mechanical properties of the collagen fibril are altered. However, current knowledge about the mechanical properties of different types of AGEs, and their quantity in collagen fibrils is limited owing to the scarcity of available experimental data. Consequently, the precise relationship between the nano-scale cross-link properties, which differ from type to type, their density in collagen fibrils, and the mechanical properties of the collagen fibrils at larger scales remains poorly understood. In our study, we use coarse-grained molecular dynamics simulations and perform destructive tensile tests on collagen fibrils to evaluate the effect of different cross-link densities and their mechanical properties on collagen fibril deformation and fracture behavior. We observe that the collagen fibril stiffens at high strain levels when either the AGEs density or the loading energy capacity of AGEs are increased. Based on our results, we demonstrate that this stiffening is caused by a mechanism that favors energy absorption via stretching rather than inter-molecular sliding. Hence, in these cross-linked collagen fibrils, the absorbed energy is stored rather than dissipated through friction, resulting in brittle fracture upon fibrillar failure. Further, by varying multiple AGEs nano-scale parameters, we show that the AGEs loading energy capacity is, aside from their density in the fibril, the unique factor determining the effect of different types of AGEs on the mechanical behavior of collagen fibrils. Our results show that knowing AGEs properties is crucial for a better understanding of the nano-scale origin of impaired tissue behavior. We further suggest that future experimental investigations should focus on the quantification of the loading energy capacity of AGEs as a key property for their influence on collagen fibrils.

摘要

晚期糖基化终产物(AGEs)是已知导致组织材料特性受损的主要原因。在构成人体组织主要结构成分的胶原纤维中,这些AGEs表现为纤维状交联。研究表明,当AGEs在胶原纤维中积累时(这一过程常由糖尿病和衰老引起),胶原纤维的力学性能会发生改变。然而,由于可用实验数据稀缺,目前关于不同类型AGEs的力学性能及其在胶原纤维中的含量的了解有限。因此,不同类型的纳米级交联特性、它们在胶原纤维中的密度以及更大尺度下胶原纤维的力学性能之间的确切关系仍不清楚。在我们的研究中,我们使用粗粒度分子动力学模拟,并对胶原纤维进行破坏性拉伸试验,以评估不同交联密度及其力学性能对胶原纤维变形和断裂行为的影响。我们观察到,当AGEs密度或AGEs的加载能量容量增加时,胶原纤维在高应变水平下会变硬。基于我们的结果,我们证明这种变硬是由一种有利于通过拉伸而非分子间滑动来吸收能量的机制引起的。因此,在这些交联的胶原纤维中,吸收的能量被储存起来,而不是通过摩擦耗散,导致纤维失效时发生脆性断裂。此外,通过改变多个AGEs纳米级参数,我们表明,除了它们在纤维中的密度外,AGEs的加载能量容量是决定不同类型AGEs对胶原纤维力学行为影响的唯一因素。我们的结果表明,了解AGEs的特性对于更好地理解组织行为受损的纳米级起源至关重要。我们进一步建议,未来的实验研究应专注于量化AGEs的加载能量容量,因为这是它们对胶原纤维影响的关键特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1975/10441443/c9b35e9e3cf9/nihpp-2308.05514v1-f0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验