Suppr超能文献

胶原原纤维中的矿物质和交联:纳米尺度下骨组织的力学行为。

Mineral and cross-linking in collagen fibrils: The mechanical behavior of bone tissue at the nano-scale.

机构信息

Institute for Building Materials, ETH Zurich, Switzerland.

Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA.

出版信息

J Mech Behav Biomed Mater. 2024 Nov;159:106697. doi: 10.1016/j.jmbbm.2024.106697. Epub 2024 Aug 22.

Abstract

The mineralized collagen fibril is the main building block of hard tissues and it directly affects the macroscopic mechanics of biological tissues such as bone. The mechanical behavior of the fibril itself is determined by its structure: the content of collagen molecules, minerals, and cross-links, and the mechanical interactions and properties of these components. Advanced glycation end products (AGEs) form cross-links between tropocollagen molecules within the collagen fibril and are one important factor that is believed to have a major influence on the tissue. For instance, it has been shown that brittleness in bone correlates with increased AGEs densities. However, the underlying nano-scale mechanisms within the mineralized collagen fibril remain unknown. Here, we study the effect of mineral and AGEs cross-linking on fibril deformation and fracture behavior by performing destructive tensile tests using coarse-grained molecular dynamics simulations. Our results demonstrate that after exceeding a critical content of mineral, it induces stiffening of the collagen fibril at high strain levels. We show that mineral morphology and location affect collagen fibril mechanics: The mineral content at which this stiffening occurs depends on the mineral's location and morphology. Further, both, increasing AGEs density and mineral content lead to stiffening and increased peak stresses. At low mineral contents, the mechanical response of the fibril is dominated by the AGEs, while at high mineral contents, the mineral itself determines fibril mechanics.

摘要

矿化胶原纤维是硬组织的主要结构单元,直接影响骨骼等生物组织的宏观力学性能。纤维本身的力学行为取决于其结构:胶原分子、矿物质和交联的含量,以及这些成分的力学相互作用和特性。糖基化终产物 (AGEs) 在胶原纤维内的原纤维分子之间形成交联,是被认为对组织有重大影响的一个重要因素。例如,已经表明骨骼的脆性与 AGEs 密度的增加有关。然而,矿化胶原纤维内的纳米级机制仍不清楚。在这里,我们通过使用粗粒分子动力学模拟进行破坏性拉伸测试,研究矿物质和 AGEs 交联对纤维变形和断裂行为的影响。我们的结果表明,在超过一定的矿物质含量后,它会在高应变水平下使胶原纤维变硬。我们表明,矿物质的形态和位置会影响胶原纤维的力学性能:发生这种硬化的矿物质含量取决于矿物质的位置和形态。此外,增加 AGEs 密度和矿物质含量都会导致变硬和峰值应力增加。在低矿物质含量下,纤维的力学响应主要由 AGEs 决定,而在高矿物质含量下,矿物质本身决定了纤维的力学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9590/11539549/fc7607c248a9/nihms-2030833-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验