Suppr超能文献

我们距离快速预测激酶突变引起的耐药性还有多远?

How Far Are We from the Rapid Prediction of Drug Resistance Arising Due to Kinase Mutations?

作者信息

Erguven Mehmet, Karakulak Tülay, Diril M Kasim, Karaca Ezgi

机构信息

Izmir Biomedicine and Genome Center, 35330 Izmir, Turkey.

Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Izmir, Turkey.

出版信息

ACS Omega. 2021 Jan 4;6(2):1254-1265. doi: 10.1021/acsomega.0c04672. eCollection 2021 Jan 19.

Abstract

In all living organisms, protein kinases regulate various cell signaling events through phosphorylation. The phosphorylation occurs upon transferring an ATP's terminal phosphate to a target residue. Because of the central role of protein kinases in several proliferative pathways, point mutations occurring within the kinase's ATP-binding site can lead to a constitutively active enzyme, and ultimately, to cancer. A select set of these point mutations can also make the enzyme drug resistant toward the available kinase inhibitors. Because of technical and economical limitations, rapid experimental exploration of the impact of these mutations remains to be a challenge. This underscores the importance of kinase-ligand binding affinity prediction tools that are poised to measure the efficacy of inhibitors in the presence of kinase mutations. To this end, here, we compare the performances of six web-based scoring tools (DSX-ONLINE, KDEEP, HADDOCK2.2, PDBePISA, Pose&Rank, and PRODIGY-LIG) in assessing the impact of kinase mutations on their interactions with their inhibitors. This assessment is carried out on a new structure-based BINDKIN benchmark we compiled. BINDKIN contains wild-type and mutant structure pairs of kinase-inhibitor complexes, together with their corresponding experimental binding affinities (in the form of IC, , and ). The performance of various web servers over BINDKIN shows that they cannot predict the binding affinities (Δs) of wild-type and mutant cases directly. Still, they could catch whether a mutation improves or worsens the ligand binding (ΔΔs) where the highest Pearson's correlation coefficient is reached by DSX-ONLINE over the dataset. When homology models are used instead of -associated crystal structures, DSX-ONLINE loses its predictive capacity. These results highlight that there is room to improve the available scoring functions to estimate the impact of protein kinase point mutations on inhibitor binding. The BINDKIN benchmark with all related results is freely accessible online (https://github.com/CSB-KaracaLab/BINDKIN).

摘要

在所有生物中,蛋白激酶通过磷酸化作用调节各种细胞信号事件。磷酸化是在将ATP的末端磷酸基团转移到目标残基上时发生的。由于蛋白激酶在多种增殖途径中发挥核心作用,激酶ATP结合位点内发生的点突变可导致酶持续激活,最终引发癌症。这些点突变中的一部分还可使酶对现有的激酶抑制剂产生耐药性。由于技术和经济限制,对这些突变影响进行快速实验探索仍然是一项挑战。这凸显了激酶-配体结合亲和力预测工具的重要性,这些工具有望在存在激酶突变的情况下衡量抑制剂的效力。为此,我们在此比较六种基于网络的评分工具(DSX-ONLINE、KDEEP、HADDOCK2.2、PDBePISA、Pose&Rank和PRODIGY-LIG)在评估激酶突变对其与抑制剂相互作用的影响方面的性能。这项评估是在我们编制的一个新的基于结构的BINDKIN基准上进行的。BINDKIN包含激酶-抑制剂复合物的野生型和突变型结构对,以及它们相应的实验结合亲和力(以IC、 和 的形式)。各种网络服务器在BINDKIN上的性能表明,它们无法直接预测野生型和突变型情况的结合亲和力(Δs)。不过,它们能够判断突变是改善还是恶化了配体结合(ΔΔs),其中DSX-ONLINE在 数据集上达到了最高的皮尔逊相关系数。当使用同源模型而非与 相关的晶体结构时,DSX-ONLINE失去了其预测能力。这些结果表明,仍有改进现有评分函数的空间,以估计蛋白激酶点突变对抑制剂结合的影响。带有所有相关结果的BINDKIN基准可在网上免费获取(https://github.com/CSB-KaracaLab/BINDKIN)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d97b/7818309/6da1dbc9fd7a/ao0c04672_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验