Suppr超能文献

利用深度学习对 Willis 环沿线的血管分叉进行自动检测和分类。

Using deep learning for an automatic detection and classification of the vascular bifurcations along the Circle of Willis.

机构信息

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Nantes Université, Polytech'Nantes, LTeN, U-6607, Rue Ch. Pauc, 44306, Nantes, France.

出版信息

Med Image Anal. 2023 Oct;89:102919. doi: 10.1016/j.media.2023.102919. Epub 2023 Aug 9.

Abstract

Most of the intracranial aneurysms (ICA) occur on a specific portion of the cerebral vascular tree named the Circle of Willis (CoW). More particularly, they mainly arise onto fifteen of the major arterial bifurcations constituting this circular structure. Hence, for an efficient and timely diagnosis it is critical to develop some methods being able to accurately recognize each Bifurcation of Interest (BoI). Indeed, an automatic extraction of the bifurcations presenting the higher risk of developing an ICA would offer the neuroradiologists a quick glance at the most alarming areas. Due to the recent efforts on Artificial Intelligence, Deep Learning turned out to be the best performing technology for many pattern recognition tasks. Moreover, various methods have been particularly designed for medical image analysis purposes. This study intends to assist the neuroradiologists to promptly locate any bifurcation presenting a high risk of ICA occurrence. It can be seen as a Computer Aided Diagnosis scheme, where the Artificial Intelligence facilitates the access to the regions of interest within the MRI. In this work, we propose a method for a fully automatic detection and recognition of the bifurcations of interest forming the Circle of Willis. Several neural networks architectures have been tested, and we thoroughly evaluate the bifurcation recognition rate.

摘要

大多数颅内动脉瘤 (ICA) 发生在大脑血管树的特定部位,称为 Willis 环 (CoW)。更具体地说,它们主要出现在构成这个环状结构的十五个主要动脉分叉处。因此,为了进行有效和及时的诊断,开发能够准确识别每个感兴趣的分叉(BoI)的方法至关重要。事实上,自动提取具有较高 ICA 发展风险的分叉将为神经放射科医生提供快速查看最令人担忧区域的机会。由于人工智能的最新进展,深度学习已成为许多模式识别任务的最佳性能技术。此外,还专门为医学图像分析目的设计了各种方法。本研究旨在帮助神经放射科医生快速定位任何具有高 ICA 发生风险的分叉。它可以被视为一种计算机辅助诊断方案,其中人工智能便于在 MRI 中访问感兴趣的区域。在这项工作中,我们提出了一种用于自动检测和识别 Willis 环中形成的感兴趣的分叉的方法。已经测试了几种神经网络架构,并彻底评估了分叉识别率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验