Suppr超能文献

基于深度学习并结合解剖学先验知识提取 Willis 环拓扑结构

Deep-learning-based extraction of circle of Willis topology with anatomical priors.

作者信息

Alblas Dieuwertje, Vos Iris N, Lipplaa Micha M, Brune Christoph, van der Schaaf Irene C, Velthuis Mireille R E, Velthuis Birgitta K, Kuijf Hugo J, Ruigrok Ynte M, Wolterink Jelmer M

机构信息

Department of Applied Mathematics, Technical Medical Centre, University of Twente, Enschede, The Netherlands.

Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Sci Rep. 2024 Dec 30;14(1):31630. doi: 10.1038/s41598-024-80574-0.

Abstract

The circle of Willis (CoW) is a circular arrangement of arteries in the human brain, exhibiting significant anatomical variability. The CoW is extensively studied in relation to neurovascular pathologies, with certain anatomical variants previously linked to ischemic stroke and intracranial aneurysms. In an individual CoW, arteries might be absent (aplasia) or underdeveloped (hypoplasia, diameter < 1 mm). As the assessment of such variations is time-consuming and susceptible to subjectivity, robust automatic extraction of personalized CoW topology from time-of-flight magnetic resonance angiography (TOF-MRA) images would highly benefit large-scale clinical investigations. Previous work has sought to extract CoW topology from voxel-based semantic segmentation masks. However, hypoplastic arteries are challenging to recover in voxel-based segmentation. Instead, we propose using a complete CoW as an anatomical prior for extracting all possible CoW arteries as shortest paths between automatically identified anatomical landmarks, guided by automatically determined artery orientation vector fields. These fields are obtained using a scale-invariant and rotation-equivariant mesh-CNN-based model (SIRE). For a 3D TOF-MRA volume, a potentially overcomplete graph of the CoW is thus extracted in which each edge represents an artery. Subsequently, a binary Random Forest classifier labels each artery as normal or hypo-/aplastic. The model was optimized and validated using a data set of 351 3D TOF-MRA scans in a cross-validation setup. We showed that using a shortest path algorithm with a cost function based on local artery orientations results in continuous artery paths, even in hypoplastic cases. We tracked the correct path in the posterior communicating arteries in 70-74% of the cases, an artery that is known to pose challenges in voxel-based segmentation models. Our downstream artery path classifier obtained an average F1 score of 0.91, demonstrating the potential of our proposed framework to extract personalized CoW topology automatically.

摘要

Willis环(CoW)是人类大脑中动脉的一种环状排列,表现出显著的解剖学变异性。CoW已被广泛研究与神经血管病变的关系,某些解剖变异先前已与缺血性中风和颅内动脉瘤相关联。在个体的CoW中,动脉可能缺失(发育不全)或发育不良(发育不全,直径<1mm)。由于评估此类变异既耗时又易受主观性影响,从飞行时间磁共振血管造影(TOF-MRA)图像中稳健地自动提取个性化的CoW拓扑结构将极大地有利于大规模临床研究。先前的工作试图从基于体素的语义分割掩码中提取CoW拓扑结构。然而,发育不良的动脉在基于体素的分割中很难恢复。相反,我们建议使用完整的CoW作为解剖学先验,以自动识别的解剖标志之间的最短路径提取所有可能的CoW动脉,并由自动确定的动脉方向向量场引导。这些场是使用基于尺度不变和旋转等变的网格卷积神经网络(SIRE)模型获得的。对于一个3D TOF-MRA体积,因此提取了一个潜在的CoW超完备图,其中每条边代表一条动脉。随后,一个二元随机森林分类器将每条动脉标记为正常或发育不全/发育不良。该模型在交叉验证设置中使用351个3D TOF-MRA扫描的数据集进行了优化和验证。我们表明,使用基于局部动脉方向的代价函数的最短路径算法可以得到连续的动脉路径,即使在发育不全的情况下也是如此。在70-74%的病例中,我们追踪到了后交通动脉中的正确路径,而后交通动脉在基于体素的分割模型中是一个已知的具有挑战性的动脉段。我们的下游动脉路径分类器获得了平均F1分数0.91,证明了我们提出的框架自动提取个性化CoW拓扑结构的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d3/11686194/0f124bc92a4e/41598_2024_80574_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验