Suppr超能文献

亚毫西弗CT深度学习图像重建在女性骨盆评估中的价值

Value of deep-learning image reconstruction at submillisievert CT for evaluation of the female pelvis.

作者信息

Ren J, Zhao J, Wang Y, Xu M, Liu X-Y, Jin Z-Y, He Y-L, Li Y, Xue H-D

机构信息

Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.

Cannon Medical System, Beijing, PR China.

出版信息

Clin Radiol. 2023 Nov;78(11):e881-e888. doi: 10.1016/j.crad.2023.07.016. Epub 2023 Aug 23.

Abstract

AIM

To assess the value of deep-learning reconstruction (DLR) at submillisievert computed tomography (CT) for the evaluation of the female pelvis, with standard dose (SD) hybrid iterative reconstruction (IR) images as reference.

MATERIALS AND METHODS

The present study enrolled 50 female patients consecutively who underwent contrast-enhanced abdominopelvic CT for clinically indicated reasons. Submillisievert pelvic images were acquired using a noise index of 15 for low-dose (LD) scans, which were reconstructed with DLR (body and body sharp), hybrid-IR, and model-based IR (MBIR). Additionally, SD scans were reconstructed with a noise index of 7.5 using hybrid-IR. Radiation dose, quantitative image quality, overall image quality, image appearance using a five-point Likert scale (1-5: worst to best), and lesion evaluation in both SD and LD images were analysed and compared.

RESULTS

The submillisievert pelvic CT examinations showed a 61.09 ± 4.13% reduction in the CT dose index volume compared to SD examinations. Among the LD images, DLR (body sharp) had the highest quantitative quality, followed by DLR (body), MBIR, and hybrid-IR. LD DLR (body) had overall image quality comparable to the reference (p=0.084) and favourable image appearance (p=0.209). In total, 40 pelvic lesions were detected in both SD and LD images. LD DLR (body and body sharp) exhibited similar diagnostic confidence (p=0.317 and 0.096) compared with SD hybrid-IR.

CONCLUSION

DLR algorithms, providing comparable image quality and diagnostic confidence, are feasible in submillisievert abdominopelvic CT. The DLR (body) algorithm with favourable image appearance is recommended in clinical settings.

摘要

目的

以标准剂量(SD)混合迭代重建(IR)图像为参照,评估亚毫西弗计算机断层扫描(CT)的深度学习重建(DLR)在女性骨盆评估中的价值。

材料与方法

本研究连续纳入50例因临床指征而行腹部盆腔CT增强扫描的女性患者。采用噪声指数15获取亚毫西弗盆腔图像用于低剂量(LD)扫描,分别用DLR(体部和体部锐化)、混合IR和基于模型的IR(MBIR)进行重建。此外,用混合IR以噪声指数7.5对SD扫描进行重建。分析并比较辐射剂量、定量图像质量、整体图像质量、采用五点李克特量表(1 - 5分:从最差到最佳)的图像外观以及SD和LD图像中的病变评估情况。

结果

与SD检查相比,亚毫西弗盆腔CT检查的CT剂量指数容积降低了61.09±4.13%。在LD图像中,DLR(体部锐化)具有最高的定量质量,其次是DLR(体部)、MBIR和混合IR。LD DLR(体部)的整体图像质量与参照相当(p = 0.084),且图像外观良好(p = 0.209)。SD和LD图像中共检测到40个盆腔病变。与SD混合IR相比,LD DLR(体部和体部锐化)表现出相似的诊断置信度(p = 0.317和0.096)。

结论

DLR算法在亚毫西弗腹部盆腔CT中可行,能提供相当的图像质量和诊断置信度。临床环境中推荐采用图像外观良好的DLR(体部)算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验