Suppr超能文献

无大脑大小偏差的顺性别和跨性别个体的准确性别预测。

Accurate sex prediction of cisgender and transgender individuals without brain size bias.

机构信息

Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.

出版信息

Sci Rep. 2023 Aug 24;13(1):13868. doi: 10.1038/s41598-023-37508-z.

Abstract

The increasing use of machine learning approaches on neuroimaging data comes with the important concern of confounding variables which might lead to biased predictions and in turn spurious conclusions about the relationship between the features and the target. A prominent example is the brain size difference between women and men. This difference in total intracranial volume (TIV) can cause bias when employing machine learning approaches for the investigation of sex differences in brain morphology. A TIV-biased model will not capture qualitative sex differences in brain organization but rather learn to classify an individual's sex based on brain size differences, thus leading to spurious and misleading conclusions, for example when comparing brain morphology between cisgender- and transgender individuals. In this study, TIV bias in sex classification models applied to cis- and transgender individuals was systematically investigated by controlling for TIV either through featurewise confound removal or by matching the training samples for TIV. Our results provide strong evidence that models not biased by TIV can classify the sex of both cis- and transgender individuals with high accuracy, highlighting the importance of appropriate modeling to avoid bias in automated decision making.

摘要

越来越多的人在神经影像学数据上使用机器学习方法,但这也带来了一个重要的问题,即混杂变量可能导致有偏差的预测,并进而对特征与目标之间的关系得出虚假的结论。一个突出的例子是女性和男性的大脑大小差异。当使用机器学习方法研究大脑形态的性别差异时,总颅内体积(TIV)的差异会导致偏差。一个受 TIV 影响的模型不会捕捉到大脑组织的定性性别差异,而是学会根据大脑大小的差异来对个体的性别进行分类,从而导致虚假和误导性的结论,例如在比较顺性别和跨性别个体的大脑形态时。在这项研究中,通过特征消除或通过匹配 TIV 来控制 TIV,系统地研究了应用于顺性别和跨性别个体的性别分类模型中的 TIV 偏差。我们的结果提供了强有力的证据,表明不受 TIV 影响的模型可以以高精度对顺性别和跨性别个体的性别进行分类,突出了适当建模以避免自动化决策中的偏差的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d2/10449927/c45a8c1d7f1a/41598_2023_37508_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验