Suppr超能文献

利用深度学习实现更公平的医疗结果的脑磁共振成像中的性别差异。

Sex differences in brain MRI using deep learning toward fairer healthcare outcomes.

作者信息

Dibaji Mahsa, Ospel Johanna, Souza Roberto, Bento Mariana

机构信息

Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada.

Department of Radiology, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada.

出版信息

Front Comput Neurosci. 2024 Nov 13;18:1452457. doi: 10.3389/fncom.2024.1452457. eCollection 2024.

Abstract

This study leverages deep learning to analyze sex differences in brain MRI data, aiming to further advance fairness in medical imaging. We employed 3D T1-weighted Magnetic Resonance images from four diverse datasets: Calgary-Campinas-359, OASIS-3, Alzheimer's Disease Neuroimaging Initiative, and Cambridge Center for Aging and Neuroscience, ensuring a balanced representation of sexes and a broad demographic scope. Our methodology focused on minimal preprocessing to preserve the integrity of brain structures, utilizing a Convolutional Neural Network model for sex classification. The model achieved an accuracy of 87% on the test set without employing total intracranial volume (TIV) adjustment techniques. We observed that while the model exhibited biases at extreme brain sizes, it performed with less bias when the TIV distributions overlapped more. Saliency maps were used to identify brain regions significant in sex differentiation, revealing that certain supratentorial and infratentorial regions were important for predictions. Furthermore, our interdisciplinary team, comprising machine learning specialists and a radiologist, ensured diverse perspectives in validating the results. The detailed investigation of sex differences in brain MRI in this study, highlighted by the sex differences map, offers valuable insights into sex-specific aspects of medical imaging and could aid in developing sex-based bias mitigation strategies, contributing to the future development of fair AI algorithms. Awareness of the brain's differences between sexes enables more equitable AI predictions, promoting fairness in healthcare outcomes. Our code and saliency maps are available at https://github.com/mahsadibaji/sex-differences-brain-dl.

摘要

本研究利用深度学习分析脑磁共振成像(MRI)数据中的性别差异,旨在进一步推进医学成像中的公平性。我们使用了来自四个不同数据集的三维T1加权磁共振图像:卡尔加里 - 坎皮纳斯 - 359、OASIS - 3、阿尔茨海默病神经影像学倡议以及剑桥衰老与神经科学中心,确保性别均衡代表性和广泛的人口统计学范围。我们的方法侧重于最少的预处理以保持脑结构的完整性,利用卷积神经网络模型进行性别分类。该模型在不采用总颅内体积(TIV)调整技术的情况下,在测试集上达到了87%的准确率。我们观察到,虽然该模型在极端脑尺寸时表现出偏差,但当TIV分布重叠更多时,偏差较小。显著性图用于识别性别分化中重要的脑区,揭示某些幕上和幕下区域对预测很重要。此外,我们由机器学习专家和放射科医生组成的跨学科团队,确保在验证结果时有不同的观点。本研究中通过性别差异图突出显示的对脑MRI中性别差异的详细调查,为医学成像的性别特定方面提供了有价值的见解,并有助于制定基于性别的偏差缓解策略,为公平人工智能算法的未来发展做出贡献。了解两性大脑之间的差异能够实现更公平的人工智能预测,促进医疗保健结果的公平性。我们的代码和显著性图可在https://github.com/mahsadibaji/sex-differences-brain-dl获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0448/11598355/5f56df2b4d1a/fncom-18-1452457-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验