Suppr超能文献

解析茄子野生近缘种的表型、DNA 条形码和 RNA 二级结构预测,为其未来的育种策略提供了见解。

Deciphering phenotyping, DNA barcoding, and RNA secondary structure predictions in eggplant wild relatives provide insights for their future breeding strategies.

机构信息

Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India.

Department of Molecular Biology and Biotechnology, Institute of Agricultural Sciences (IAS), Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, 751003, India.

出版信息

Sci Rep. 2023 Aug 24;13(1):13829. doi: 10.1038/s41598-023-40797-z.

Abstract

Eggplant or aubergine (Solanum melongena L.) and its wild cousins, comprising 13 clades with 1500 species, have an unprecedented demand across the globe. Cultivated eggplant has a narrow molecular diversity that hinders eggplant breeding advancements. Wild eggplants need resurgent attention to broaden eggplant breeding resources. In this study, we emphasized phenotypic and genotypic discriminations among 13 eggplant species deploying chloroplast-plastid (Kim matK) and nuclear (ITS2) short gene sequences (400-800 bp) at DNA barcode region followed by ITS2 secondary structure predictions. The identification efficiency at the Kim matK region was higher (99-100%) than in the ITS2 region (80-90%). The eggplant species showed 13 unique secondary structures with a central ring with various helical orientations. Principal component analysis (PCoA) provides the descriptor-wise phenotypic clustering, which is essential for trait-specific breeding. Groups I and IV are categorized under scarlet complexes S. aethiopicum, S. trilobatum, and S. melongena (wild and cultivated). Group II represented the gboma clade (S. macrocarpon, S. wrightii, S. sisymbriifolium, and S. aculeatissimum), and group III includes S. mammosum, and S. torvum with unique fruit shape and size. The present study would be helpful in genetic discrimination, biodiversity conservation, and the safe utilization of wild eggplants.

摘要

茄子(Solanum melongena L.)及其野生近缘种包括 13 个分支,有 1500 个物种,在全球范围内需求空前。栽培茄子的分子多样性很窄,阻碍了茄子的育种进展。野生茄子需要重新受到关注,以拓宽茄子的育种资源。在这项研究中,我们强调了 13 个茄子物种之间的表型和基因型差异,部署了叶绿体-质体(Kim matK)和核(ITS2)短基因序列(400-800 bp)在 DNA 条码区域,然后预测 ITS2 二级结构。Kim matK 区域的鉴定效率更高(99-100%),而 ITS2 区域的鉴定效率较低(80-90%)。茄子物种表现出 13 种独特的二级结构,具有中央环和各种螺旋取向。主成分分析(PCoA)提供了描述符的表型聚类,这对于特定性状的育种是必不可少的。第一组和第四组被归类为红色复合体 S. aethiopicum、S. trilobatum 和 S. melongena(野生和栽培)。第二组代表 gboma 分支(S. macrocarpon、S. wrightii、S. sisymbriifolium 和 S. aculeatissimum),第三组包括 S. mammosum 和 S. torvum,它们具有独特的果实形状和大小。本研究将有助于遗传鉴别、生物多样性保护和野生茄子的安全利用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验