Suppr超能文献

高精度图谱揭示人类大脑嗅觉编码结构。

High-precision mapping reveals the structure of odor coding in the human brain.

机构信息

Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Department of Psychology, Rhodes College, Memphis, TN, USA.

出版信息

Nat Neurosci. 2023 Sep;26(9):1595-1602. doi: 10.1038/s41593-023-01414-4. Epub 2023 Aug 24.

Abstract

Odor perception is inherently subjective. Previous work has shown that odorous molecules evoke distributed activity patterns in olfactory cortices, but how these patterns map on to subjective odor percepts remains unclear. In the present study, we collected neuroimaging responses to 160 odors from 3 individual subjects (18 h per subject) to probe the neural coding scheme underlying idiosyncratic odor perception. We found that activity in the orbitofrontal cortex (OFC) represents the fine-grained perceptual identity of odors over and above coarsely defined percepts, whereas this difference is less pronounced in the piriform cortex (PirC) and amygdala. Furthermore, the implementation of perceptual encoding models enabled us to predict olfactory functional magnetic resonance imaging responses to new odors, revealing that the dimensionality of the encoded perceptual spaces increases from the PirC to the OFC. Whereas encoding of lower-order dimensions generalizes across subjects, encoding of higher-order dimensions is idiosyncratic. These results provide new insights into cortical mechanisms of odor coding and suggest that subjective olfactory percepts reside in the OFC.

摘要

嗅觉感知本质上是主观的。先前的研究表明,有气味的分子会在嗅觉皮层中引发分布式活动模式,但这些模式如何映射到主观的嗅觉感知上尚不清楚。在本研究中,我们从 3 名个体(每位个体 18 小时)中收集了对 160 种气味的神经影像学反应,以探究个体嗅觉感知背后的神经编码方案。我们发现,眶额皮层(OFC)的活动不仅可以代表气味的粗略感知,还可以代表气味的精细感知,而在梨状皮层(PirC)和杏仁核中,这种差异则不那么明显。此外,实施感知编码模型使我们能够预测新气味的嗅觉功能磁共振成像反应,这表明编码的感知空间的维度从 PirC 到 OFC 逐渐增加。虽然较低阶维度的编码可以跨个体概括,但高阶维度的编码是个体特有的。这些结果为嗅觉编码的皮质机制提供了新的见解,并表明主观嗅觉感知存在于 OFC 中。

相似文献

1
High-precision mapping reveals the structure of odor coding in the human brain.
Nat Neurosci. 2023 Sep;26(9):1595-1602. doi: 10.1038/s41593-023-01414-4. Epub 2023 Aug 24.
3
De Novo Emergence of Odor Category Representations in the Human Brain.
J Neurosci. 2016 Jan 13;36(2):468-78. doi: 10.1523/JNEUROSCI.3248-15.2016.
4
Smell the Label: Odors Influence Label Perception and Their Neural Processing.
J Neurosci. 2025 Apr 2;45(14):e1159242024. doi: 10.1523/JNEUROSCI.1159-24.2024.
5
Odor quality coding and categorization in human posterior piriform cortex.
Nat Neurosci. 2009 Jul;12(7):932-8. doi: 10.1038/nn.2324. Epub 2009 May 31.
6
Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study.
J Neurosci. 2002 Dec 15;22(24):10819-28. doi: 10.1523/JNEUROSCI.22-24-10819.2002.
7
Configural and elemental coding of natural odor mixture components in the human brain.
Neuron. 2014 Nov 19;84(4):857-69. doi: 10.1016/j.neuron.2014.10.012. Epub 2014 Nov 6.
8
Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
J Neurosci. 2019 Dec 11;39(50):10002-10018. doi: 10.1523/JNEUROSCI.1234-19.2019. Epub 2019 Oct 31.
9
Multidimensional representation of odors in the human olfactory cortex.
Hum Brain Mapp. 2016 Jun;37(6):2161-72. doi: 10.1002/hbm.23164. Epub 2016 Mar 16.
10
Brain activation during odor perception in males and females.
Neuroreport. 2001 Jul 3;12(9):2027-33. doi: 10.1097/00001756-200107030-00048.

引用本文的文献

1
Exploring the feasibility of olfactory brain-computer interfaces.
Sci Rep. 2025 May 26;15(1):18404. doi: 10.1038/s41598-025-01488-z.
2
Predictive coding in the human olfactory system.
Trends Cogn Sci. 2025 May 8. doi: 10.1016/j.tics.2025.04.005.
3
Smell the Label: Odors Influence Label Perception and Their Neural Processing.
J Neurosci. 2025 Apr 2;45(14):e1159242024. doi: 10.1523/JNEUROSCI.1159-24.2024.
4
Brain-wide pleiotropy investigation of alcohol drinking and tobacco smoking behaviors.
Transl Psychiatry. 2025 Feb 20;15(1):61. doi: 10.1038/s41398-025-03288-5.
5
Characterizing Olfactory Brain Responses in Young Infants.
J Neurosci. 2025 Mar 12;45(11):e1780242025. doi: 10.1523/JNEUROSCI.1780-24.2025.
6
Immersive interfaces for clinical applications: current status and future perspective.
Front Neurorobot. 2024 Nov 27;18:1362444. doi: 10.3389/fnbot.2024.1362444. eCollection 2024.

本文引用的文献

1
How to establish robust brain-behavior relationships without thousands of individuals.
Nat Neurosci. 2022 Jul;25(7):835-837. doi: 10.1038/s41593-022-01110-9.
2
Brain-behavior correlations: Two paths toward reliability.
Neuron. 2022 May 4;110(9):1446-1449. doi: 10.1016/j.neuron.2022.04.018.
3
A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence.
Nat Neurosci. 2022 Jan;25(1):116-126. doi: 10.1038/s41593-021-00962-x. Epub 2021 Dec 16.
4
Olfactory perceptual decision-making is biased by motivational state.
PLoS Biol. 2021 Aug 26;19(8):e3001374. doi: 10.1371/journal.pbio.3001374. eCollection 2021 Aug.
5
Transient and Persistent Representations of Odor Value in Prefrontal Cortex.
Neuron. 2020 Oct 14;108(1):209-224.e6. doi: 10.1016/j.neuron.2020.07.033. Epub 2020 Aug 21.
6
Structure and flexibility in cortical representations of odour space.
Nature. 2020 Jul;583(7815):253-258. doi: 10.1038/s41586-020-2451-1. Epub 2020 Jul 1.
7
Odor quality profile is partially influenced by verbal cues.
PLoS One. 2019 Dec 12;14(12):e0226385. doi: 10.1371/journal.pone.0226385. eCollection 2019.
8
Characterizing functional pathways of the human olfactory system.
Elife. 2019 Jul 24;8:e47177. doi: 10.7554/eLife.47177.
9
Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias.
PLoS Comput Biol. 2019 May 24;15(5):e1006299. doi: 10.1371/journal.pcbi.1006299. eCollection 2019 May.
10
Interpreting encoding and decoding models.
Curr Opin Neurobiol. 2019 Apr;55:167-179. doi: 10.1016/j.conb.2019.04.002. Epub 2019 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验