Suppr超能文献

基于三维经阴道超声图像的肛提肌自动分割

Automated Segmentation of Levator Ani Muscle from 3D Endovaginal Ultrasound Images.

作者信息

Rabbat Nada, Qureshi Amad, Hsu Ko-Tsung, Asif Zara, Chitnis Parag, Shobeiri Seyed Abbas, Wei Qi

机构信息

Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA.

Inova Fairfax Hospital, Fairfax, VA 22042, USA.

出版信息

Bioengineering (Basel). 2023 Jul 28;10(8):894. doi: 10.3390/bioengineering10080894.

Abstract

Levator ani muscle (LAM) avulsion is a common complication of vaginal childbirth and is linked to several pelvic floor disorders. Diagnosing and treating these conditions require imaging of the pelvic floor and examination of the obtained images, which is a time-consuming process subjected to operator variability. In our study, we proposed using deep learning (DL) to automate the segmentation of the LAM from 3D endovaginal ultrasound images (EVUS) to improve diagnostic accuracy and efficiency. Over one thousand images extracted from the 3D EVUS data of healthy subjects and patients with pelvic floor disorders were utilized for the automated LAM segmentation. A U-Net model was implemented, with Intersection over Union (IoU) and Dice metrics being used for model performance evaluation. The model achieved a mean Dice score of 0.86, demonstrating a better performance than existing works. The mean IoU was 0.76, indicative of a high degree of overlap between the automated and manual segmentation of the LAM. Three other models including Attention UNet, FD-UNet and Dense-UNet were also applied on the same images which showed comparable results. Our study demonstrated the feasibility and accuracy of using DL segmentation with U-Net architecture to automate LAM segmentation to reduce the time and resources required for manual segmentation of 3D EVUS images. The proposed method could become an important component in AI-based diagnostic tools, particularly in low socioeconomic regions where access to healthcare resources is limited. By improving the management of pelvic floor disorders, our approach may contribute to better patient outcomes in these underserved areas.

摘要

肛提肌撕裂是阴道分娩的常见并发症,与多种盆底疾病有关。诊断和治疗这些疾病需要对盆底进行成像并检查所获得的图像,这是一个耗时的过程,且受操作人员差异的影响。在我们的研究中,我们提出使用深度学习(DL)从三维经阴道超声图像(EVUS)中自动分割肛提肌,以提高诊断准确性和效率。从健康受试者和盆底疾病患者的三维EVUS数据中提取的一千多张图像被用于肛提肌的自动分割。我们实现了一个U-Net模型,使用交并比(IoU)和Dice指标来评估模型性能。该模型的平均Dice分数为0.86,表现优于现有研究。平均IoU为0.76,表明肛提肌自动分割和手动分割之间有高度的重叠。另外三个模型,包括注意力U-Net、FD-U-Net和密集U-Net,也应用于相同的图像,结果相当。我们的研究证明了使用具有U-Net架构的深度学习分割来自动分割肛提肌以减少手动分割三维EVUS图像所需的时间和资源的可行性和准确性。所提出的方法可能成为基于人工智能的诊断工具的重要组成部分,特别是在医疗资源有限的低社会经济地区。通过改善盆底疾病的管理,我们的方法可能有助于在这些服务不足的地区改善患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10451809/0521c3b6b80a/bioengineering-10-00894-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验