Suppr超能文献

基于卷积神经网络的盆腔器官脱垂磁共振成像盆底结构分割

Convolutional neural network-based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse.

作者信息

Feng Fei, Ashton-Miller James A, DeLancey John O L, Luo Jiajia

机构信息

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Med Phys. 2020 Sep;47(9):4281-4293. doi: 10.1002/mp.14377. Epub 2020 Jul 28.

Abstract

PURPOSE

Automated segmentation could improve the efficiency of modeling-based pelvic organ prolapse (POP) evaluations. However, segmentation performance is limited by the blurry soft tissue boundaries. In this study, we aimed to present a hybrid solution for uterus, rectum, bladder, and levator ani muscle segmentation by combining a convolutional neural network (CNN) and a level set method.

METHODS

We used 24 sagittal pelvic floor magnetic resonance (MR) series from six anterior vaginal prolapse and six posterior vaginal prolapse subjects (a total 528 MR images). The stress MR images were performed both at rest and at maximal Valsalva. We assigned 264 images for training, 132 images for validation, and 132 images for testing. A CNN was designed by introducing a multi-resolution features pyramid module (MRFP) into an encoder-decoder model. Depth separable convolution and pretraining were used to improve model convergence. Multiclass cross entropy loss and multiclass Dice loss were used for model training. The dice similarity coefficient (DSC) and average surface distance (ASD) were used for evaluating the segmentation results. To prove the effectiveness of our model, we compared it with advanced segmentation methods including Deeplabv3+, U-Net, and FCN-8s. The ablation study was designed to quantify the contributions of MRFP, the encoder network, and pretraining. Besides, we investigated the working mechanism of MRFP in the segmentation network by comparing our model with three of its variants. Finally, the level set method was used to improve the CNN model further.

RESULTS

Dice loss showed better segmentation performance than multiclass cross entropy loss. MRFP was efficacious for different encoder networks. With MRFP, U-Net and U-Net-X (X represents Xception encoder network) have improved the DSC, on average by 6.8 and 5.3 points. Compared with different CNN models, our model achieved the highest average DSC of 65.6 points and the lowest average ASD of 2.9 mm. With the level set method, the DSC of our model improved to 69.4 points.

CONCLUSIONS

MRFP proved to be effective in addressing the blurry soft tissue boundary problem on pelvic floor MR images. A hybrid solution based on CNN and level set method was presented for pelvic organ segmentation both at rest and at maximal Valsalva; with this method, we achieved state-of-the-art results.

摘要

目的

自动分割可提高基于模型的盆腔器官脱垂(POP)评估的效率。然而,分割性能受到软组织边界模糊的限制。在本研究中,我们旨在通过结合卷积神经网络(CNN)和水平集方法,提出一种用于子宫、直肠、膀胱和肛提肌分割的混合解决方案。

方法

我们使用了来自6名前阴道脱垂和6名后阴道脱垂受试者的24个矢状盆底磁共振(MR)序列(共528张MR图像)。在静息状态和最大瓦尔萨尔瓦动作时均进行了应力MR图像采集。我们分配264张图像用于训练,132张图像用于验证,132张图像用于测试。通过将多分辨率特征金字塔模块(MRFP)引入编码器 - 解码器模型来设计CNN。使用深度可分离卷积和预训练来提高模型收敛性。多类交叉熵损失和多类骰子损失用于模型训练。骰子相似系数(DSC)和平均表面距离(ASD)用于评估分割结果。为了证明我们模型的有效性,我们将其与包括Deeplabv3 +、U - Net和FCN - 8s在内的先进分割方法进行了比较。消融研究旨在量化MRFP、编码器网络和预训练的贡献。此外,我们通过将我们的模型与其三个变体进行比较,研究了MRFP在分割网络中的工作机制。最后,使用水平集方法进一步改进CNN模型。

结果

骰子损失显示出比多类交叉熵损失更好的分割性能。MRFP对不同的编码器网络有效。使用MRFP,U - Net和U - Net - X(X表示Xception编码器网络)的DSC平均提高了6.8和5.3个百分点。与不同的CNN模型相比,我们的模型实现了最高的平均DSC为65.6个百分点,最低的平均ASD为2.9毫米。使用水平集方法,我们模型的DSC提高到了69.4个百分点。

结论

MRFP被证明在解决盆底MR图像上软组织边界模糊问题方面是有效的。提出了一种基于CNN和水平集方法的混合解决方案,用于静息状态和最大瓦尔萨尔瓦动作时的盆腔器官分割;使用这种方法,我们取得了领先的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验