Suppr超能文献

用于眼底视网膜动静脉分类的多任务分割与分类网络

Multi-Task Segmentation and Classification Network for Artery/Vein Classification in Retina Fundus.

作者信息

Yi Junyan, Chen Chouyu

机构信息

Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.

出版信息

Entropy (Basel). 2023 Jul 31;25(8):1148. doi: 10.3390/e25081148.

Abstract

Automatic classification of arteries and veins (A/V) in fundus images has gained considerable attention from researchers due to its potential to detect vascular abnormalities and facilitate the diagnosis of some systemic diseases. However, the variability in vessel structures and the marginal distinction between arteries and veins poses challenges to accurate A/V classification. This paper proposes a novel Multi-task Segmentation and Classification Network (MSC-Net) that utilizes the vessel features extracted by a specific module to improve A/V classification and alleviate the aforementioned limitations. The proposed method introduces three modules to enhance the performance of A/V classification: a Multi-scale Vessel Extraction (MVE) module, which distinguishes between vessel pixels and background using semantics of vessels, a Multi-structure A/V Extraction (MAE) module that classifies arteries and veins by combining the original image with the vessel features produced by the MVE module, and a Multi-source Feature Integration (MFI) module that merges the outputs from the former two modules to obtain the final A/V classification results. Extensive empirical experiments verify the high performance of the proposed MSC-Net for retinal A/V classification over state-of-the-art methods on several public datasets.

摘要

由于具有检测血管异常和辅助某些全身性疾病诊断的潜力,眼底图像中动脉和静脉(A/V)的自动分类已引起研究人员的广泛关注。然而,血管结构的变异性以及动脉和静脉之间的细微差别给准确的A/V分类带来了挑战。本文提出了一种新颖的多任务分割与分类网络(MSC-Net),该网络利用特定模块提取的血管特征来改善A/V分类并缓解上述局限性。所提出的方法引入了三个模块来提高A/V分类的性能:一个多尺度血管提取(MVE)模块,它利用血管的语义区分血管像素和背景;一个多结构A/V提取(MAE)模块,通过将原始图像与MVE模块产生的血管特征相结合来对动脉和静脉进行分类;以及一个多源特征整合(MFI)模块,它合并前两个模块的输出以获得最终的A/V分类结果。大量的实证实验验证了所提出的MSC-Net在几个公共数据集上用于视网膜A/V分类时比现有方法具有更高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aac/10453284/bce6590b6537/entropy-25-01148-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验