Perea-Jacobo Ricardo, Paredes-Gutiérrez Guillermo René, Guerrero-Chevannier Miguel Ángel, Flores Dora-Luz, Muñiz-Salazar Raquel
Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22860, Mexico.
Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22890, Mexico.
Microorganisms. 2023 Jul 25;11(8):1872. doi: 10.3390/microorganisms11081872.
Tuberculosis (TB) remains one of the most significant global health problems, posing a significant challenge to public health systems worldwide. However, diagnosing drug-resistant tuberculosis (DR-TB) has become increasingly challenging due to the rising number of multidrug-resistant (MDR-TB) cases, despite the development of new TB diagnostic tools. Even the World Health Organization-recommended methods such as Xpert MTB/XDR or Truenat are unable to detect all the genome mutations associated with drug resistance. While Whole Genome Sequencing offers a more precise DR profile, the lack of user-friendly bioinformatics analysis applications hinders its widespread use. This review focuses on exploring various artificial intelligence models for predicting DR-TB profiles, analyzing relevant English-language articles using the PRISMA methodology through the Covidence platform. Our findings indicate that an Artificial Neural Network is the most commonly employed method, with non-statistical dimensionality reduction techniques preferred over traditional statistical approaches such as Principal Component Analysis or t-distributed Stochastic Neighbor Embedding.
结核病仍然是全球最严重的健康问题之一,对全球公共卫生系统构成重大挑战。然而,尽管开发了新的结核病诊断工具,但由于耐多药(MDR-TB)病例数量不断增加,诊断耐多药结核病(DR-TB)变得越来越具有挑战性。即使是世界卫生组织推荐的方法,如Xpert MTB/XDR或Truenat,也无法检测出所有与耐药性相关的基因组突变。虽然全基因组测序提供了更精确的耐药性概况,但缺乏用户友好的生物信息学分析应用程序阻碍了其广泛使用。本综述重点探讨用于预测DR-TB概况的各种人工智能模型,通过Covidence平台使用PRISMA方法分析相关英文文章。我们的研究结果表明,人工神经网络是最常用的方法,与主成分分析或t分布随机邻域嵌入等传统统计方法相比,非统计降维技术更受青睐。