Suppr超能文献

基于PRISMA的全基因组序列机器学习范围综述。

Machine Learning of the Whole Genome Sequence of : A Scoping PRISMA-Based Review.

作者信息

Perea-Jacobo Ricardo, Paredes-Gutiérrez Guillermo René, Guerrero-Chevannier Miguel Ángel, Flores Dora-Luz, Muñiz-Salazar Raquel

机构信息

Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22860, Mexico.

Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22890, Mexico.

出版信息

Microorganisms. 2023 Jul 25;11(8):1872. doi: 10.3390/microorganisms11081872.

Abstract

Tuberculosis (TB) remains one of the most significant global health problems, posing a significant challenge to public health systems worldwide. However, diagnosing drug-resistant tuberculosis (DR-TB) has become increasingly challenging due to the rising number of multidrug-resistant (MDR-TB) cases, despite the development of new TB diagnostic tools. Even the World Health Organization-recommended methods such as Xpert MTB/XDR or Truenat are unable to detect all the genome mutations associated with drug resistance. While Whole Genome Sequencing offers a more precise DR profile, the lack of user-friendly bioinformatics analysis applications hinders its widespread use. This review focuses on exploring various artificial intelligence models for predicting DR-TB profiles, analyzing relevant English-language articles using the PRISMA methodology through the Covidence platform. Our findings indicate that an Artificial Neural Network is the most commonly employed method, with non-statistical dimensionality reduction techniques preferred over traditional statistical approaches such as Principal Component Analysis or t-distributed Stochastic Neighbor Embedding.

摘要

结核病仍然是全球最严重的健康问题之一,对全球公共卫生系统构成重大挑战。然而,尽管开发了新的结核病诊断工具,但由于耐多药(MDR-TB)病例数量不断增加,诊断耐多药结核病(DR-TB)变得越来越具有挑战性。即使是世界卫生组织推荐的方法,如Xpert MTB/XDR或Truenat,也无法检测出所有与耐药性相关的基因组突变。虽然全基因组测序提供了更精确的耐药性概况,但缺乏用户友好的生物信息学分析应用程序阻碍了其广泛使用。本综述重点探讨用于预测DR-TB概况的各种人工智能模型,通过Covidence平台使用PRISMA方法分析相关英文文章。我们的研究结果表明,人工神经网络是最常用的方法,与主成分分析或t分布随机邻域嵌入等传统统计方法相比,非统计降维技术更受青睐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/924e/10456961/c8525b30e80a/microorganisms-11-01872-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验